第六章树和二叉树--Huffman树

一、判断题

1、

在这里插入图片描述

答案:T

解析:

构造哈夫曼树的过程

  • 按从小到大排序
  • 选取其根结点的权值为最小的两棵二叉树,分别作为左、右子树构造一棵新的二叉树,并置这棵新的二叉树根结点的权值为其左、右子树根结点的权值之和
  • 删去这两棵树,同时加入刚生成的新树的根节点
  • 再一次从小到大排序,重复上述过程
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    带权路径长度
    在这里插入图片描述
    带权路径长度=9*2+11*2+13*2+8*3+4*4+5*4=...

由建立过程以及最终结果可知,答案是正确


单选题

1、

在这里插入图片描述

答案:D

解析:

完全二叉树是

  • 有空缺,但是只在倒数后两排有空缺,而且空缺都出现在右边
  • 为满二叉树

哈夫曼树形状不止一种,有多种,但是带权路径长度一定是最小的。

带权路径长度=叶子的权数*叶子路径的长度+ 叶子的权数*叶子路径的长度 所有叶子这样操作之后求和 ; WPL(T) = 求和wklk (对所有叶子结点)


2、

在这里插入图片描述

答案:C

解析:

所占字节长度就是求带权路径长度
在这里插入图片描述


3、

在这里插入图片描述

答案:B

解析:
等长方式编码:有n个字符就是log2底n的长度
等长方式编码所占位数:2 * (4 + 2 + 5 + 1) = 24;哈夫曼编码所占位数:1 * 3 + 2 * 3 + 4 * 2 + 5 * 1 = 22;所以相差为2


4、

在这里插入图片描述

答案:C

解析:求出哈夫曼树之后再
树中所有叶子结点的带权路径长度之和WPL(T) = 求和wklk (对所有叶子结点)


5、

在这里插入图片描述

答案:D


6、

在这里插入图片描述

答案:D

解析:带权路径长度=叶子的权数*叶子路径的长度+ 叶子的权数*叶子路径的长度 所有叶子这样操作之后求和 ; WPL(T) = 求和wklk (对所有叶子结点)


7、

在这里插入图片描述

答案:B

解析:哈夫曼树的形状不是唯一的


8、

在这里插入图片描述

答案:C


9、

在这里插入图片描述

答案:C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值