一、判断题
1、
答案:T
解析:
构造哈夫曼树的过程
- 按从小到大排序
- 选取其根结点的权值为最小的两棵二叉树,分别作为左、右子树构造一棵新的二叉树,并置这棵新的二叉树根结点的权值为其左、右子树根结点的权值之和
- 删去这两棵树,同时加入刚生成的新树的根节点
- 再一次从小到大排序,重复上述过程
带权路径长度
带权路径长度=9*2+11*2+13*2+8*3+4*4+5*4=...
由建立过程以及最终结果可知,答案是正确
单选题
1、
答案:D
解析:
完全二叉树是
- 有空缺,但是只在倒数后两排有空缺,而且空缺都出现在右边
- 为满二叉树
哈夫曼树形状不止一种,有多种,但是带权路径长度一定是最小的。
带权路径长度=叶子的权数*叶子路径的长度+ 叶子的权数*叶子路径的长度 所有叶子这样操作之后求和 ; WPL(T) = 求和wklk (对所有叶子结点)
2、
答案:C
解析:
所占字节长度就是求带权路径长度
3、
答案:B
解析:
等长方式编码:有n个字符就是log2底n的长度
等长方式编码所占位数:2 * (4 + 2 + 5 + 1) = 24;哈夫曼编码所占位数:1 * 3 + 2 * 3 + 4 * 2 + 5 * 1 = 22;所以相差为2
4、
答案:C
解析:求出哈夫曼树之后再
树中所有叶子结点的带权路径长度之和WPL(T) = 求和wklk (对所有叶子结点)
5、
答案:D
6、
答案:D
解析:带权路径长度=叶子的权数*叶子路径的长度+ 叶子的权数*叶子路径的长度 所有叶子这样操作之后求和 ; WPL(T) = 求和wklk (对所有叶子结点)
7、
答案:B
解析:哈夫曼树的形状不是唯一的
8、
答案:C
9、
答案:C