给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
该题是2018年天梯赛的一个题,也是我没做出来的一道15分题。
值得反思,自己的解题思路是多么的lowB
#include<bits/stdc++.h>
using namespace std;
int f(int x) //返回给定长度对应字符串的个数
{
int sum=1;
for(int i=0;i<x;i++)
sum=sum*26;//排列的问题
return sum;
}
int main()
{
int l,n;
char a[10];//存答案
cin>>l>>n;
int i;
int l1=f(l);//26的l次
int x=l1-n;//变成正序的位置数
int j=0;
for(i=l-1;i>=0;i--)
{//转换为26进制存入a
a[j]=x/f(i)+'a';
x=x%f(i);
j++;
}
for(i=0;i<l;i++)
cout<<a[i];
}