DW模型搭建和评估

经过前面的探索性数据分析、数据清洗重构可视化后,我们可以很清楚的了解到数据集的情况,下面我们进一步探索模型搭建和模型评估。

from IPython.display import Image  #调用Image
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
plt.rcParams['figure.figsize'] = (10, 6)  # 设置输出图片大小

特征工程

缺失值填充(清洗)
  • 对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充
  • 对连续变量缺失值:填充均值、中位数、众数
# 对分类变量进行填充
train['Cabin'] = train['Cabin'].fillna('NA')
train['Embarked'] = train['Embarked'].fillna('S')
# 对连续变量进行填充
train['Age'] = train['Age'].fillna(train['Age'].mean())
# 检查缺失值比例
train.isnull().mean().sort_values(ascending=False)
编码分类变量(重构)
# 取出所有的输入特征
data = train[['Pclass','Sex','Age','SibSp','Parch','Fare', 'Embarked']]
data.head(3)
"""# 进行虚拟变量转换 
将非数值型变量写成数值型 增加了多列
"""
data = pd.get_dummies(data) 
data.head(3)
PclassAgeSibSpParchFareSex_femaleSex_maleEmbarked_CEmbarked_QEmbarked_S
0322.0107.250001001
1138.01071.283310100
2326.0007.925010001

模型搭建

  • 处理完前面的数据我们就得到建模数据,下一步是选择合适模型
  • 在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习
  • 除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定
  • 刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型

在这里插入图片描述

train_test_split
  • 切割数据集是为了后续能评估模型泛化能力
  • sklearn中切割数据集的方法为train_test_split
  • 查看函数文档可以在jupyter notebook里面使用train_test_split?后回车即可看到
  • 分层和随机种子在参数里寻找
from sklearn.model_selection import train_test_split
# 一般先取出X和y后再切割,有些情况会使用到未切割的,这时候X和y就可以用
X = data
y = train['Survived']

# 对数据集进行切割
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=0)#stratify分层

# 查看数据形状
X_train.shape, X_test.shape
((668, 10), (223, 10))
模型创建
  • 创建基于线性模型的分类模型(逻辑回归)
  • 创建基于树的分类模型(决策树、随机森林)
  • 查看模型的参数,并更改参数值,观察模型变化
逻辑回归
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier

# 默认参数逻辑回归模型
lr = LogisticRegression()
lr.fit(X_train, y_train)

# 调整参数后的逻辑回归模型
# lr2 = LogisticRegression(C=100)                                                  
# lr2.fit(X_train, y_train)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
          penalty='l2', random_state=None, solver='liblinear', tol=0.0001,
          verbose=0, warm_start=False)
# 查看训练集和测试集score值
print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(lr.score(X_test, y_test)))
Training set score: 0.80
Testing set score: 0.78
随机森林
# 默认参数的随机森林分类模型
rfc = RandomForestClassifier()

# 调整参数后的随机森林分类模型
#rfc2 = RandomForestClassifier(n_estimators=100, max_depth=5) 
                  
rfc.fit(X_train, y_train)
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=10, n_jobs=1,
            oob_score=False, random_state=None, verbose=0,
            warm_start=False)
print("Training set score: {:.2f}".format(rfc.score(X_train, y_train)))
print("Testing set score: {:.2f}".format(rfc.score(X_test, y_test)))
Training set score: 0.98
Testing set score: 0.80
输出模型预测结果
  • 一般监督模型在sklearn里面有个predict能输出预测标签,predict_proba则可以输出标签概率
# 预测标签
pred = lr.predict(X_train)
# 此时我们可以看到0和1的数组
pred[:10]
array([0, 1, 1, 1, 0, 0, 1, 0, 1, 1], dtype=int64)
# 预测标签概率
pred_proba = lr.predict_proba(X_train)
pred_proba[:10]
array([[0.62887228, 0.37112772],
       [0.14897191, 0.85102809],
       [0.47161963, 0.52838037],
       [0.20365643, 0.79634357],
       [0.86428117, 0.13571883],
       [0.90338863, 0.09661137],
       [0.13829319, 0.86170681],
       [0.89516113, 0.10483887],
       [0.05735121, 0.94264879],
       [0.13593244, 0.86406756]])

模型评估

  • 模型评估是为了知道模型的泛化能力。
  • 交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。
  • 在交叉验证中,数据被多次划分,并且需要训练多个模型。
  • 最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。
  • 准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例
  • 召回率(recall)度量的是正类样本中有多少被预测为正类
  • f-分数是准确率与召回率的调和平均
交叉验证
  • 用10折交叉验证来评估逻辑回归模型
  • 计算交叉验证精度的平均值

在这里插入图片描述

  • 交叉验证在sklearn中的模块为sklearn.model_selection
from sklearn.model_selection import cross_val_score

lr = LogisticRegression(C=100)
scores = cross_val_score(lr, X_train, y_train, cv=10)

# 平均k折交叉验证分数
print("Average cross-validation score: {:.2f}".format(scores.mean()))
Average cross-validation score: 0.80
混淆矩阵
  • 计算二分类问题的混淆矩阵
  • 计算精确率、召回率以及f-分数
    在这里插入图片描述
    在这里插入图片描述
  • 混淆矩阵的方法在sklearn中的sklearn.metrics模块
  • 混淆矩阵需要输入真实标签和预测标签
from sklearn.metrics import confusion_matrix

# 训练模型
lr = LogisticRegression(C=100)
lr.fit(X_train, y_train)

# 模型预测结果
pred = lr.predict(X_train)

# 混淆矩阵
confusion_matrix(y_train, pred)
array([[350,  62],
       [ 71, 185]], dtype=int64)
from sklearn.metrics import classification_report

#函数classification_report打印 精确率、召回率以及f1-score
print(classification_report(y_train, pred))
             precision    recall  f1-score   support

          0       0.83      0.85      0.84       412
          1       0.75      0.72      0.74       256

avg / total       0.80      0.80      0.80       668
ROC曲线
  • 绘制ROC曲线

ROC的全称是Receiver Operating Characteristic Curve,中文名字叫“受试者工作特征曲线”,顾名思义,其主要的分析方法就是画这条特征曲线。这里在网上找了一个比较好的图样示例如下
在这里插入图片描述
该曲线的横坐标为假阳性率(False Positive Rate, FPR),N是真实负样本的个数,
FP是N个负样本中被分类器预测为正样本的个数。

纵坐标为真阳性率(True Positive Rate, TPR)

P是真实正样本的个数,
TP是P个正样本中被分类器预测为正样本的个数。

T P R = T P T F + F N ,    F P R = F P F P + T N TPR = \frac {TP}{TF + FN} ,\space \space FPR = \frac{FP}{FP+TN} TPR=TF+FNTP,  FPR=FP+TNFP

我们希望TPR值越高越好,FPR值越低越好

绘制完成曲线后,要对模型进行量化的分析,即AUC(Area under roc Curve)面积,指ROC曲线下的面积大小,只需要沿着ROC横轴做积分就可以了。真实场景中ROC曲线一般都会在y=xy=x的上方,取值一般在0.5~1之间。AUC的值越大,说明该模型的性能越好

*绘制步骤
1.假设已经得出一系列样本被划分为正类的概率Score值,按照大小排序。

2.从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于某个样本,其“Score”值为0.6,那么“Score”值大于等于0.6的样本都被认为是正样本,而其他样本则都认为是负样本。

3.每次选取一个不同的threshold,得到一组FPR和TPR,以FPR值为横坐标和TPR值为纵坐标,即ROC曲线上的一点。

4.根据3中的每个坐标点,画图。

  • ROC曲线在sklearn中的模块为sklearn.metrics
  • ROC曲线下面所包围的面积越大越好
from sklearn.metrics import roc_curve

fpr, tpr, thresholds = roc_curve(y_test, lr.decision_function(X_test))
plt.plot(fpr, tpr, label="ROC Curve")
plt.xlabel("FPR")
plt.ylabel("TPR (recall)")
# 找到最接近于0的阈值
close_zero = np.argmin(np.abs(thresholds))
plt.plot(fpr[close_zero], tpr[close_zero], 'o', markersize=10, label="threshold zero", fillstyle="none", c='k', mew=2)
plt.legend(loc=4)
<matplotlib.legend.Legend at 0x1d1d9a10860>

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值