pku 1222 EXTENDED LIGHTS OUT 解题报告

 

pku 1222 EXTENDED LIGHTS OUT 解题报告

一、题目链接:http://acm.pku.edu.cn/JudgeOnline/problem?id=1222

二、题意:给出56列的01数列,表示灯亮与否,1表示灯亮,0表示灯不亮。按下一个灯,则其上下左右的灯也会相反,即1001.求按下那些灯,使全部的灯都不亮?

三、解题思路:

此题想了挺久,看看网上acm训练计划,说好像使用到了高斯消去法,可本人我无论怎么样都想不出与高斯消去法相联系起来。希望牛人告诉我。

我主要是看中了一个条件,按下一个灯,则影响上下左右的灯。仔细用笔写写,发现只要确定其中第一行,你们其他的行都可以确定。比如sample中,确定了1 0 1 0 0 1,那么第二行就变为0 0 1 1 1 0,确定第二行就容易多了。因为这5个灯(搜索到灯以及其上下左右的灯),其第五个即下的那一个灯,就是上面灯的原状态加上其对应的上左右结果的和%2。用C语言表达:

for (j = 2; j <= 5; j++)

                     {

                            for (k = 1; k <= 6; k++)  

                            {

                                   result[j][k] = (puzzle[j - 1][k] + result[j - 2][k] + result[j - 1][k] + result[j - 1][k - 1] + result[j - 1][k + 1]) % 2;

                            }

                     }

那么解决了这一步就好办多了。

四、AC代码:

#include <stdio.h>

#include <string.h>

 

int puzzle[7][8], result[7][8];

  

int check(int result[][8])

{

       int i, j, k, temp[7][8] = {0};

 

       //temp用于计算随着灯的按下,其相应的结果

       for (i = 1; i <= 5; i++)

       {

              for (j = 1; j <= 6; j++)

              {

                     temp[i][j] = puzzle[i][j];

              }

       }

       for (i = 1; i <= 5; i++)

       {

              for (j = 1; j <= 6; j++)

              {

                     //遇到灯必须按下的,那么其上下左右都要按下

                     if (result[i][j])

                     {

                            temp[i][j] = (temp[i][j] == 1) ? 0 : 1;

                            temp[i - 1][j] = (temp[i - 1][j] == 1) ? 0 : 1;

                            temp[i][j - 1] = (temp[i][j - 1] == 1) ? 0 : 1;

                            temp[i][j + 1] = (temp[i][j + 1] == 1) ? 0 : 1;

                            temp[i + 1][j] = (temp[i + 1][j] == 1) ? 0 : 1;

                     }

              }

       }

       //判断是否符合要求

       for (j = 1; j <= 5; j++)

       {

              for (k = 1; k <= 6; k++)

              {

                     if (temp[j][k])

                     {

                            return 0;

                     }

              }

       }

       return 1;

}

 

int main()  

{  

       freopen("1.txt", "r", stdin);

       int i, j, k, temp;

    int test, count = 1;

      

    scanf("%d", &test);  

    while (test--)  

    {  

        memset(result, 0, sizeof(result));  

        for (i = 1; i <= 5; ++i)  

              {

                     for (j = 1; j <= 6; ++j)  

            {

                            scanf("%d", &puzzle[i][j]);

                     }

              }

        for (i = 0; i < 64; i++)  

        {  

                     //转换为二进制

            for (j = 6, temp = i; j >= 1; j--)  

                     {

                            result[1][j] = temp % 2;

                            temp /= 2;

                     }

                     //确定下面的结果

                     for (j = 2; j <= 5; j++)

                     {

                            for (k = 1; k <= 6; k++)  

                            {

                                   result[j][k] = (puzzle[j - 1][k] + result[j - 2][k] + result[j - 1][k] + result[j - 1][k - 1] + result[j - 1][k + 1]) % 2;

                            }

                     }

                     //判断是否符合要求

                     if (check(result))

                     {

                            break;

                     }

              }

              //打印

              printf("PUZZLE #%d/n", count++);

              for (i = 1; i <= 5; i++)

              {

                     for (j = 1; j <= 6; j++)

                     {

                            printf("%d ", result[i][j]);

                     }

                     printf("/n");

              }

       }

       return 0;

}

五、结果:memory156k time 0ms

其实按我的代码来看使比较丑陋的,如果数据很大的时候,那么我的代码一定是要超时的。看了牛人的代码,让我佩服,也自己觉得差距很大啊····

 

PS:如果有人知道怎么用到高斯消去法解决此题,望告诉我一下·谢谢·(*^__^*) ~

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值