引自 http://www.cnblogs.com/en-heng/p/3970231.html
连续子数组最大和问题
问题描述
输入一个整形数组,求数组中连续的子数组使其和最大。比如,数组x
应该返回 x[2..6]的和187.
问题解决
我们很自然地能想到穷举的办法,穷举所有的子数组的之和,找出最大值。
穷举法
i, j的for循环表示x[i..j],k的for循环用来计算x[i..j]之和。
maxsofar = 0
for i = [0, n)
for j = [i, n)
sum = 0
for k = [i, j]
sum += x[k]
/* sum is sum of x[i..j] */
maxsofar = max(maxsofar, sum)
有三层循环,穷举法的时间复杂度为 O(n3)
对穷举法的改进1
我们注意到x[i..j]之和 = x[i..j-1]之和 + x[j]
,因此在j的for循环中,可直接求出sum。
maxsofar = 0
for i = [0, n)
sum = 0
for j = [i, n)
sum += x[j]
/* sum is sum of x[i..j] */
maxsofar = max(maxsofar, sum)
显然,改进之后的时间复杂度变为 O(n2) 。
对穷举法的改进2
在计算fibonacci数时,应该还有印象:用一个累加数组(cumulative array)记录前面n-1次之和,计算当前时只需加上n即可。同样地,我们用累加数组cumarr记录:cumarr[i] = x[0] + . . . +x[i]
,那么x [i.. j]之和 = cumarr[j] -cumarr[i - 1]
cumarr[-1] = 0
for i = [0, n)
cumarr[i] = cumarr[i-1] + x[i]
maxsofar = 0
for i = [0, n)
for j = [i, n)
sum = cumarr[j] - cumarr[i-1]
/* sum is sum of x[i..j] */
maxsofar = max(maxsofar, sum)
时间复杂度依然为 O(n2) 。
分治法
所谓分治法,是指将一个问题分解为两个子问题,然后分而解决之。具体步骤如下:
-
先将数组分为两个等长的子数组a, b;
-
分别求出两个数组a,b的连续子数组之和;
-
还有一种情况比较容易忽略:有可能最大和的子数组跨越两个数组;
-
最后比较 ma , mb , mc ,取最大即可。
在计算
mc
时,注意:
mc
必定包含总区间的中间元素,因此求
mc
等价于从中间元素开始往左累加的最大值 + 从中间元素开始往右累加的最大值
。
float maxsum3(l, u)
if (l > u) /* zero elements */
return 0
if (l == u) /* one element */
return max(0, x[l])
m = (l + u) / 2
/* find max crossing to left */
lmax = sum = 0
for (i = m; i >= l; i--)
sum += x[i]
lmax = max(lmax, sum)
/* find max crossing to right */
rmax = sum = 0
for i = (m, u]
sum += x[i]
rmax = max(rmax, sum)
return max(lmax+rmax,
maxsum3(l, m),
maxsum3(m+1, u));
容易证明,时间复杂度为 O(n∗log n) 。
Kadane算法
Kadane算法又被称为扫描法,该算法用到了一个启发式规则:如果前面一段连续子数组的和小于0,那么就丢弃它。其实也蛮好理解的,举个简单例子,比如:数组-1, 2, 3
,-1为负数,为了使得子数组之和最大,显然不应当把-1计入进内。
max_ending_here记录前面一段连续子数组之和。
Initialize:
max_so_far = 0
max_ending_here = 0
Loop for each element of the array
(a) max_ending_here = max_ending_here + x[i]
(b) if(max_ending_here < 0)
max_ending_here = 0
(c) if(max_so_far < max_ending_here)
max_so_far = max_ending_here
return max_so_far
只遍历了一遍数组,因此时间复杂度为 O(n) 。
编程实现
#include <iostream>
#include <fstream>
#include <vector>
using namespace std;
vector<int> s;
int maxSoFar;
int maxSum3(int l, int u, vector<int> x);//分治法函数声明
int main()
{
ifstream in("input.txt");
for(int i;in>>i;)
s.push_back(i);
int sum;
maxSoFar = 0;
//穷举法方法一
for (int i = 0;i<s.size()-1;i++){
for (int j = i;j<s.size()-1;j++){
sum = 0;
for(int k=i;k<j;k++)
sum += s[k];
/* sum is sum of x[i..j] */
maxSoFar = max(maxSoFar, sum);
}
}
cout << maxSoFar<< endl;
//穷举法之改进1:在j的for循环中,可直接求出sum。
for (int i = 0;i<s.size()-1;i++){
sum = 0;
for (int j = i;j<s.size()-1;j++){
sum += s[j];
maxSoFar = max(maxSoFar, sum);
}
}
cout << maxSoFar<< endl;
//穷举法之改进2:在计算fibonacci数时,我们用一个累加数组(cumulative array)记录前面n-1次之和,计算当前时只需加上n即可。
//同样地,我们用累加数组cumArr记录
vector<int> cumArr(s.size());
for (int i=0;i<s.size();i++)
cumArr[i] = cumArr[i-1] + s[i];
maxSoFar = 0;
for (int i= 0;i<s.size();i++)
for(int j = i;j<s.size();j++){
sum = cumArr[j] - cumArr[i-1];
maxSoFar = max(maxSoFar, sum);
}
cout << maxSoFar<< endl;
//==================================================
// 分治法:可以看成递归的把每个元素假设成最大子数组中元素,并由它向左或向右查找
maxSoFar=maxSum3(0,s.size()-1,s);
cout << maxSoFar<< endl;
//==================================================
//Kadane算法,即扫描法,该算法用到了一个启发式规则:如果前面一段连续子数组的和小于0,那么就丢弃它。
maxSoFar = 0;
int maxEndingHere = 0;
for(int i=0;i<s.size();i++){
maxEndingHere = maxEndingHere+ s[i];
if(maxEndingHere < 0)//如果当前子序列小于0了,又重新开始扫描。
maxEndingHere = 0;
if(maxSoFar< maxEndingHere)
maxSoFar= maxEndingHere;
}
cout << maxSoFar<< endl;
return 0;
}
//===============================================
// 分治法
int maxSum3(int l, int r, vector<int> x){
if (l > r) /* zero elements */
return 0;
if (l == r) /* one element */
return max(0, x[l]);
int m = (l + r) / 2;
//从中间向两边寻找,能够实现分治求解,并同时查找横跨两个子问题的最大子数组和
/* find max crossing to left */
int lmax = 0,sum = 0;
for (int i = m; i >= l; i--){//保证可以从中间开始,找横跨两个子问题的最大子数组和。
sum += x[i];
lmax = max(lmax, sum);
}
/* find max crossing to right */
int rmax = 0;
sum = 0;
for (int i = m+1;i<=r;i++){
sum += x[i];
rmax = max(rmax, sum);
}
return max(lmax+rmax,//横跨两个子问题的子数组
max(maxSum3(l,m,x),maxSum3(m+1,r,x)));
}
参考资料
[1] Jon Bentley, Programming Pearls.
[2] GeeksforGeeks, Largest Sum Contiguous Subarray.