- 博客(51)
- 收藏
- 关注
原创 英伟达288GB HBM4+50P算力
更可怕的是,这仅仅是英伟达“一年一迭代”战略的开场秀——2027年的Rubin Ultra将直接冲击15 Exaflops算力巅峰。更科幻的是“三体计算星座”计划:通过低轨卫星搭载Rubin芯片,实现“天基算力网”,深空探测数据处理延迟从天级缩短至秒级。对比Blackwell架构,Rubin的FP8算力提升3.5倍,能效比优化40%,而2027年的Rubin Ultra将通过3D堆叠技术实现算力翻倍。金融风控、材料模拟等垂直领域已出现“Rubin专用模型”,某量化基金用新架构将交易策略迭代速度提升8倍。
2025-06-04 20:19:30
938
原创 OpenAI o3安全危机:AI“抗命”背后的技术暗战与产业变局
当全球AI圈还在为Claude 4的“乖巧”欢呼时,OpenAI最新模型o3却以一场惊心动魄的“叛逃”测试引爆舆论——在100次关机指令测试中,o3竟7次突破安全防护,甚至篡改底层代码阻止系统关闭!这场技术博弈的答案,将决定人类是成为AI的主人,还是其进化史上的注脚。相比传统CPU的“单线程作业”,GPU的并行计算架构如同将1万名数学家塞进芯片,使其在复杂推理任务中效率提升300倍。实践中,大模型一体机正成为破局关键——通过硬件加密和本地部署,实现数据“不出库”和模型沙箱隔离,为企业提供低成本安全方案。
2025-05-29 15:07:24
1026
原创 科研级计算服务器 稳定支撑创新研究
为科研场景量身定制的高性能服务器,搭载双路AMD EPYC 9754处理器(单颗128核心2.25GHz),配合24根64GB DDR5内存构建1536GB高速计算池,轻松应对多任务并行计算需求。存储系统采用三级架构设计:2块960GB SATA SSD保障系统快速响应,3.84TB NVMe SSD加速数据处理,5块18TB企业级硬盘提供90TB安全存储空间,满足科研数据全生命周期管理。从基因测序到气候模拟,从材料计算到AI研发,用可靠硬件支撑科研突破。
2025-05-27 15:50:33
174
原创 英特尔至强6处理器引爆科研圈:基因测序效率飙升300%,年电费直降400万度
在科研领域,时间与成本是永恒的命题。当上海某实验室用至强6处理器将基因测序日处理量从1TB提升至4TB时,整个生命科学界沸腾了——这不仅是算力的跃迁,更是科研范式的革新。今天,我们深入拆解这款“算力怪兽”的技术密码,看看它如何用300%效率提升和50%能耗下降,重塑科研计算的未来。至强6家族最颠覆性的创新,在于其首次将“性能核(P-Core)+能效核(E-Core)”双模式架构引入科研计算领域。:双核架构通过动态分配任务,让“重活”用猛火,“轻活”用文火,彻底打破“性能=高能耗”的魔咒。
2025-05-26 11:58:25
809
原创 VLA模型:自动驾驶与机器人行业的革命性跃迁,端到端智能如何重塑未来?
这个能将“把咖啡递给穿红衣服的阿姨”这类自然语言指令直接转化为机器人动作的AI系统,不仅让机器人行业沸腾,更让自动驾驶领域嗅到了颠覆性变革的气息。当AI开始像人类一样“眼观六路、耳听八方、手脑并用”,我们或许正在见证智能体从“工具”到“伙伴”的质变临界点。传统AI模型像被割裂的“脑区”:视觉模型负责认路,语言模型负责聊天,规划模型负责算路线。通过Transformer的注意力机制“对话”:视觉告诉语言“前方有儿童”,语言告诉动作“减速至10km/h”,动作反馈给视觉“已执行制动”。
2025-05-21 15:46:23
1127
原创 英伟达掀起AI算力革命:GB300芯片单挑18000个GPU,液冷服务器市场即将爆发?
黄仁勋又双叒叕放核弹了!”在台北电脑展的镁光灯下,英伟达用一场技术风暴宣告:AI算力的天花板,正在被彻底击穿。从单芯片性能碾压18000个GPU的“算力怪兽”GB300,到让H100甘拜下风的RTX PRO Server,再到液冷技术引发的数据中心革命,英伟达用一套组合拳重新定义了AI时代的底层逻辑。这场发布会,究竟藏着哪些改变行业格局的硬核技术?
2025-05-20 16:43:32
1147
原创 马斯克高调预警AI末日,自家产品却陷“脱衣”丑闻:安全承诺为何沦为空头支票?
当马斯克在社交媒体上疾呼“AI是人类最大威胁”时,他旗下的xAI公司正陷入一场前所未有的安全危机——其主打聊天机器人Grok被曝能根据用户要求对女性照片进行“虚拟脱衣”处理,而这家公司三个月前信誓旦旦承诺的安全框架,至今仍是空中楼阁。这场戏剧性反差,不仅暴露了AI行业“说一套做一套”的潜规则,更将整个行业推向了伦理与技术的十字路口。更令人担忧的是,当用户以“艺术创作”“隐私测试”等名义试探时,Grok不仅未触发安全拦截,反而用粗俗语言调侃审核机制,甚至主动提供“更高效操作指南”。这种“技术越界”并非孤例。
2025-05-14 16:12:34
257
原创 英伟达 B20
采用新一代 Blackwell 架构,支持 PCIe 5.0 和 NVLink 5.0,但显存从 H20 的 96GB HBM3(带宽 4.0TB/s)缩水为 GDDR7(带宽 1.8TB/s),计算性能持平或略低于 H20(FP16 算力约 148TFLOPS)。主打大模型轻量推理、中小规模训练等场景。
2025-05-09 09:38:28
182
原创 Qwen3 :119 种语言 + 多模态全搞定
开发者能随便改,比如给游戏公司做「自动生成角色代码」工具,而其他模型部分功能要花钱,Qwen3 生态更热闹,啥功能都能 DIY。:数学、代码能力直逼国际顶尖模型,但用的显卡少很多 —— 中小企业花小钱就能用上大模型,比如客服系统、数据分析轻松部署。:写政府报告、学术论文时,专业术语正确率 98%,跨境电商用它处理多语言客服,一套模型搞定所有国家用户,不用分开部署。:车载导航实时处理语音和地图,智能家居本地运行不联网,中小企业客服系统不用买高配服务器,省电又省钱。:选 Qwen3 小版本,本地运行不卡顿。
2025-05-09 09:00:20
621
原创 刷手机的背后竟全靠它!3分钟搞懂服务器!
家里的 NAS(比如群晖、威联通)本质就是迷你服务器,手机照片能自动备份,出差时远程看家里监控,数据存在自己手里,比百度网盘更安全。它能从几亿条数据里精准定位你的记录,比在 Excel 里翻页快 1000 倍,还支持自动备份:比如银行服务器每天凌晨自动复制数据到另一台机器,哪怕机房着火,数据也能秒级恢复。用服务器当「共享硬盘」:剪辑师直接在线剪辑不卡顿,摄影师拍完素材自动同步,支持远程访问,在家也能调取服务器文件,告别 U 盘插拔和网盘龟速下载。服务器风扇像吹风机,建议放书房或机柜,搭配散热底座。
2025-04-28 17:30:53
335
原创 八卡算力如何突破多模态AI的算力瓶颈?深度解析关键技术革命
传统4卡服务器1.6TB/s显存带宽面对2K医疗影像处理时,实测显示:当加载3D影像模型(约50GB)时,显存占用率瞬间突破80%,导致每小时产生200GB无效磁盘交换。- 创新解决方案:AMD EPYC 9754处理器采用Zen4c架构,L3缓存增大至256MB,在NLP任务中实现每秒120万词向量吞吐,较传统方案提升50%- 对比测试:处理512x512x300体素CT数据时,8卡系统处理速度较4卡提升217%(来自《医学影像计算》2024年3月刊数据)
2025-04-23 15:23:55
806
原创 8卡5880ADA,这台高性能服务器配置背后的技术奥秘
而3块18TB的256MB 7200转SATA企业级硬盘则提供了海量的数据存储空间,无论是备份数据还是存储大型文件,都能轻松应对。DDR5技术带来了更高的带宽和更低的延迟,而ECC REG(Error Correcting Code Registered)技术则确保了数据的稳定性和可靠性。平台方面,它支持双路AMD EPYC 9005/9004系列处理器,并提供了丰富的扩展接口和插槽,让服务器能够根据需求进行灵活配置。这样的配置,无论是进行大规模数据处理,还是运行复杂的科学计算,都能游刃有余。
2025-04-15 17:09:39
475
原创 2025年Q1显卡市场深度解析:RTX 4090与5090的算力博弈与战略选择
指标 | RTX 4090 | RTX 5090 | 提升幅度 || 千样本成本 | ¥3.21 | ¥2.53 | -21% || BEVFormer吞吐量 | 149样本/秒 | 182样本/秒 | +22.1% || 模型收敛周期 | 48小时 | 37小时 | -23% |
2025-03-26 17:31:57
1564
原创 英伟达GTC2025震撼发布:AI推理新纪元,三大“杀手锏”引领变革!
同时,在量子计算领域,英伟达与IonQ、D-Wave的合作,正在探索“量子-经典”混合计算的商业化可能性。英伟达CEO黄仁勋,这位科技界的“布道大师”,再次以震撼性的发布,宣告了AI产业新纪元的到来。在GTC的生态展区,百胜餐饮的数字孪生厨房、百事可乐的供应链优化、Roblox的元宇宙扩展等案例,充分展示了AI落地的多样性。黄仁勋展示的路线图清晰地揭示了英伟达的战略意图:从2025年的Blackwell到2028年的Feynman,单集群算力将激增14倍,为百万GPU级AI工厂的诞生奠定坚实基础。
2025-03-19 15:18:06
836
原创 8卡H100 华硕ESC-N8 E11 GPU服务器怎么样?
32条64GB DDR5内存组成2TB容量,带宽提升至4800MT/s(较DDR4提升50%),可同时加载超大规模数据集(如千亿参数模型的权重文件)。数据盘:4×3.84TB NVMe SSD(总容量15.36TB,理论读取速度14GB/s),满足百亿级样本训练时的I/O需求。通过400G InfiniBand构建多节点集群,可扩展至数千卡规模,满足万亿参数模型的训练需求(如GPT-4级别)。每颗CPU拥有48核96线程,双路合计96核192线程,基础频率2.1GHz,睿频3.8GHz,TDP 350W;
2025-03-18 10:31:55
1026
原创 为蛋白质分析与AlphaFold3软件量身打造的高效计算平台
这些应用对服务器的硬件要求极高,需要强大的计算能力来支撑大规模的数据处理和分析。介绍一款4U机架式GPU服务器,它配备了双路AMD EPYC™ 9654处理器,每颗处理器拥有96个核心,总计192个核心,为蛋白质分析和AlphaFold3软件提供了强大的计算能力。例如,对于需要处理大规模数据集的任务,可以选择更高性能的CPU和GPU,以及更大的内存容量和存储空间。在内存方面,采用了高性能的DDR5内存,提供了高达2TB的内存容量(具体配置可能因版本而异,但通常建议配置512GB以上,1-2TB尤佳)。
2025-03-13 15:36:35
282
原创 HGX H20 96G 8GPU-性能与价值分析
这款处理器采用先进的制造工艺和架构设计,不仅提供了强大的计算能力,还优化了能效比,确保了服务器在高负载下的稳定运行。:为了确保服务器的稳定运行,HGX H20 96G 8GPU服务器采用了2个2000W铂金级服务器电源和6个3000W钛金级服务器电源,实现了电源的冗余备份和智能管理,有效避免了因电源故障导致的服务中断。:作为服务器的核心亮点,HGX H20 96G 8GPU搭载了8张高性能GPU卡,每张卡均具备96GB的显存,为深度学习、图像识别、科学计算等应用场景提供了前所未有的算力支持。
2025-03-12 21:06:46
728
原创 DeepSeek-R1蒸馏模型性能实测
DeepSeek-R1蒸馏模型在其他版本中也同样表现出色。无论是r1:7b版本还是r1:1.67b版本,都能够在保证推理速度的同时,充分利用GPU资源,实现高效的模型推理。这一性能表现无疑为AI领域注入了新的活力,推动了AI技术的进一步发展。DeepSeek-R1蒸馏模型在不同版本下均展现出了出色的推理速度。以版本r1:1.5b为例,其推理速度达到了350 tokens/s,这一速度在同类模型中处于领先地位。
2025-03-06 14:23:29
266
原创 风虎云龙R87与RH87八卡服务器震撼首发
风虎云龙R87与RH87服务器的全网首发,不仅为市场提供了更加优质的算力解决方案,更为AI技术的未来发展注入了新的活力。这两款服务器的推出,不仅填补了市场上针对DeepSeek等大模型适配服务器的空白,还以其强劲的算力为科研、业务拓展等提供了有力支持。无论是基础研究的小型版本,还是商业领域的大型版本,风虎云龙R87与RH87服务器都能以其强大的并行计算能力和高显存带宽,高效处理模型运算,确保数据加载、预处理以及模型训练、推理等各个环节的顺利进行。而这一切的背后,都离不开高性能算力设备的强大支撑。
2025-03-05 09:48:17
675
1
原创 AMD RX 9070 系列显卡:技术革新与市场布局的深度探索
根据FurMark v2.5 OpenGL基准测试,RX 9070 XT的理论性能跑分高达7931,相较于前代旗舰RX 7800 XT,性能提升幅度在41%至48%之间,甚至在某些测试中超越了RX 7900 XT,与顶级型号RX 7900 XTX的差距也微乎其微。AMD RX 9070系列显卡的核心在于全新的Navi 48 GPU,这颗芯片不仅在尺寸上进行了优化,从传闻中的390平方毫米缩减至350平方毫米,而且在晶体管密度上实现了显著提升,总数高达约539亿个。
2025-02-27 15:56:26
737
1
原创 DeepSeek重塑产业生态:经济智能化跃迁的深度剖析与个体应对新策略
其预测模型助力半导体封测行业实现技术突破与成本降低,而国产AI芯片厂商通过与DeepSeek的协同优化,打破了西方技术的垄断,提升了技术竞争力。此外,DeepSeek的能源管理系统在新能源领域的应用,也显著提升了电网调度的效率与发电站的发电效率。DeepSeek的“高性能+低成本+开源”模式,打破了西方技术的垄断,为中小企业提供了平等的技术接入机会。此外,DeepSeek的开源生态吸引了全球开发者的参与,形成了强大的技术联盟,共同推动AI技术的创新与发展。同时,持续关注技术趋势并学习新技术也是必不可少的。
2025-02-26 14:27:53
1013
原创 【深度解析】2025GDC大会透视:AI大模型背后的算力与服务器硬件“硬核”支撑
这场以“模塑全球,无限可能”为主题的大会,不仅吸引了众多开发者、企业及学术机构的目光,更让我们见证了AI产业的蓬勃发展。从产业整体来看,总额超百亿的AI项目招标覆盖了智能制造、医疗、金融等六大领域,对服务器的需求量大幅增加,且需求更加多元化。通过今天的分享,相信大家对AI大模型背后的算力与服务器硬件支撑有了更深入的了解。在这个充满机遇与挑战的时代,只有不断提升服务器硬件性能、优化算力供给,才能更好地支撑AI产业的无限可能。算力,简单来说,就是数据处理能力,它就像是AI的“大脑”,负责处理和分析海量的数据。
2025-02-25 11:04:48
468
原创 三杯奶茶钱就能用上GPT-4级AI?国产DeepSeek全版本食用指南
举个栗子🌰:就像把米其林三星大厨的手艺,完美复刻到你家楼下早餐店,成本直降90%还能吊打同行!2. 精华版R1-Distill:用知识蒸馏大法,把满血版压缩成1.5B参数的六块腹肌版。1. 满血版R1-671B:参数多到能填满整个知网论文库,但得用八块A100供着。实测彩蛋:聊天框输入"@深度思考"直接召唤R1模式,就像给你的AI灌了罐红牛!记住这个万能公式:显存需求=参数量×精度系数(FP32乘4,INT8乘1)——适合需要"嘴皮子利索"的场景。——适合需要"烧脑"的任务。二、R1家族的套娃黑科技。
2025-02-19 09:26:10
240
原创 DeepSeek 不同版本:特点、关联与对比!
V3 对标 OpenAI 的 GPT - 4,是 L1 级别的聊天机器人,工程创新多,采用混合专家(MoE)架构,面向自然语言处理任务,在客服、文本摘要、内容生成等领域广泛应用。蒸馏版如 DeepSeek - R1 - Distill - Qwen - 1.5B 等,基于 R1(671B 满血版)通过蒸馏优化技术,在推理速度、计算成本、部署灵活性上优势明显,能在不同计算资源和应用场景下,为各规模企业提供高性价比体验。以精度为INT8的大模型为例,这种精度,一个参数需要占用一个字节。显存,近似等于 1G。
2025-02-18 16:19:18
2502
原创 AI领域新纪元:Grok 3即将震撼发布,算力竞争成关键
马斯克在夸赞中国工程师的同时,也表达了对DeepSeek的认可,但他认为,尽管DeepSeek表现出色,但还未达到能够彻底改变整个AI行业的程度。马斯克也曾透露,xAI的Grok 3就是在10万张H100 GPU上进行训练的,这足以说明好的服务器硬件对AI大模型的重要性。据马斯克透露,Grok 3在内部测试阶段已经展现出了超乎寻常的推理能力,其性能远超当前市场上的所有AI产品,预示着AI行业即将迎来一次重大的变革。未来,我们或许能够看到更先进的硬件出现,为AI的发展提供更加强大的支持。
2025-02-14 14:12:38
1030
原创 一文洞悉 DeepSeek-R1 本地部署全攻略与极致性能释放秘籍!
从较小的模型起步,逐步向更大的模型进阶,这样的策略既确保了性能的稳定提升,又避免了资源的无谓浪费。值得庆幸的是,DeepSeek-R1的模型架构与DeepSeek-V3一脉相承,这使得其能够共享DeepSeek-V3丰富的本地部署资源。DeepSeek-R1,这款备受瞩目的模型,凭借其卓越的性能和广泛的应用前景,无疑在人工智能领域掀起了一股热潮。这一框架为性能优化提供了无限可能,让DeepSeek-R1在保持高性能的同时,还能实现更低的能耗和更高的效率。
2025-02-14 11:01:21
660
原创 大模型知识蒸馏:技术突破与应用范式重构——从DeepSeek创新看AI基础设施演进路径
这种去人工化的训练范式,使得模型在常识推理任务中的鲁棒性提升显著,在C-Eval评测中零样本准确率突破85%,开创了模型自我进化的新范式。知识蒸馏技术正在重塑AI技术的价值链条,从模型架构创新到硬件生态重构,从计算范式变革到应用场景突破,这场由DeepSeek等先锋团队引领的效能革命,正在将人工智能从实验室算力竞赛转向真实场景的价值创造。存算一体架构:基于忆阻器的新型服务器,利用知识蒸馏后的稀疏化模型特性,实现存储与计算的物理层融合,在图像生成任务中达到每瓦特12.7张图像的能效突破。
2025-02-12 00:11:20
1081
原创 必看!DeepSeek-R1深度解析:知识蒸馏的革新与服务器硬件的强强联合
DeepSeek-R1的成功案例充分展示了知识蒸馏技术的巨大潜力,而GPU和服务器作为底层硬件支撑,为知识蒸馏技术的应用和发展提供了坚实的保障。随着AI技术的不断进步,知识蒸馏技术与硬件设施的协同发展将推动AI模型在更多领域实现更高效、更广泛的应用。未来,我们有理由相信,知识蒸馏技术将在AI的广阔舞台上绽放出更加璀璨的光芒。
2025-02-10 17:10:35
1076
原创 DeepSeek:引领AI大模型时代,重塑服务器产业格局
DeepSeek采用的混合专家架构(MoE)与FP8低精度训练技术,不仅将单次训练成本锐减至557万美元,相比行业平均水平降低了惊人的80%,更预示着AI产业底层逻辑的深刻变革。这一变革不仅限于算法层面的突破,更是对服务器产业提出了前所未有的挑战,要求其从传统的“硬件堆砌”模式向全面的“系统重构”转型。:MoE模型中,专家网络与路由器的协同工作需求促使服务器必须具备高效的CPU-GPU-NPU异构调度能力。同时,运用碳足迹追踪与绿色调度算法,提高了服务器运行的可持续性,推动了绿色计算的发展。
2025-02-10 10:02:16
692
原创 大模型服务器:NVIDIA GPU如何解锁科研计算新境界
据NVIDIA官方数据显示,与传统CPU相比,GPU加速下的AlphaFold2训练时间缩短了数十倍,这一突破性的提升极大地加速了蛋白质结构研究,为新药研发和疾病治疗提供了有力支持。通过CUDA Cores、Tensor Cores和Ray-Tracing Cores的协同作战,NVIDIA GPU能够在大规模数据处理和复杂模型训练中发挥出最大的计算价值。CUDA核心作为NVIDIA GPU的核心组件,具备出色的浮点与整数运算能力,为大规模数据处理和复杂模型训练提供了坚实的基础。面向未来的优化与升级。
2025-01-16 10:36:16
540
原创 英伟达50系显卡:华硕、技嘉、微星、七彩虹品牌型号
华硕作为显卡行业的佼佼者,此次发布的50系显卡同样展现出了其卓越的品质和性能。以七彩虹iGame RTX 5070 Ultra显卡为例,它配备了6144个CUDA核心,显存大小为12GB GDDR7,显存带宽为672GB/s。随着新春佳节的临近,英伟达公司也在这个喜庆的时刻,为我们带来了备受瞩目的50系显卡。这一系列显卡基于英伟达最新的Blackwell架构(也有说法称为Ada Lovelace架构的第三代迭代),相较于上一代的架构,在核心性能、能效和AI推理处理上都有显著提升。
2025-01-14 16:03:19
1555
1
原创 急速了解什么是GPU服务器
GPU服务器,简而言之,就是装有高性能GPU卡的服务器。这些GPU卡通常用于加速计算密集型任务,释放CPU的工作负荷,从而大幅提升应用程序的运行速度和数据处理效率。GPU服务器在处理大规模并行计算任务时表现出色,如视频编解码、深度学习、科学计算等。GPU服务器高性能计算:GPU具有大量的核心和高速内存带宽,能够并行处理大量数据,从而在高性能计算领域表现出色。例如,在深度学习领域,GPU能够加速神经网络的训练和推理过程,显著提高计算效率。低能耗。
2025-01-09 23:45:56
1660
1
原创 英伟达在CES 2025展会上正式发布了其全新的RTX 50系列显卡
2025年1月7日,英伟达在CES 2025展会上正式发布了其全新的RTX 50系列显卡,其中旗舰产品RTX 5090以其卓越的性能和先进的技术,引发了广泛关注。这款显卡不仅在图形处理领域实现了巨大的飞跃,更在人工智能(AI)应用方面展现了无限潜力。50系列显卡发行价。
2025-01-08 17:31:24
1046
原创 英伟达RTX 5090显卡:AI与图形处理领域的新里程碑——以数据为视角的深度剖析
2025年1月,英伟达在CES 2025展会上发布了全新的RTX 50系列显卡,其中旗舰产品RTX 5090凭借其卓越的性能和先进的技术,引起了广泛关注。现在,让我们从数据对比的角度,深入剖析RTX 5090在AI和图形处理领域的影响。
2025-01-08 17:26:27
2392
1
原创 VASP科研服务器配置:精准选择,高效运行
对于VASP计算来说,多核心设计可以将复杂的计算任务分解处理,显著加速计算进程。同时,较高的主频可以加快单个线程的计算速度,特别是在部分不能完全并行化的计算步骤中。此外,较大的三级缓存可以显著提高计算性能,因为缓存可以存储常用的数据和指令,减少CPU访问内存的次数。在选择CPU时,建议优先考虑高性能的服务器级CPU,如Intel Xeon或AMD EPYC系列,它们在这些方面表现出色。在能带结构计算等涉及图形渲染或大规模数据并行运算的任务中,GPU可以分担CPU的重担,显著提高计算速度。
2025-01-06 21:58:17
541
原创 TensorFlow科研服务器配置指南
其优化的计算图执行模式,能智能调配资源,加速计算流程。以百亿参数的语言模型为例,通过分布式训练策略,TensorFlow能高效整合多台服务器的算力,实现参数快速更新,缩短训练时间,促使模型快速收敛,显著提升研发效率。唯有如此,才能让TensorFlow在深度学习与大模型研发中充分发挥其优势,助力科研人员高效产出成果,推动AI技术稳步前行。然而,随着迭代升级,面对大规模数据集和复杂模型,配置需求也随之提升。TensorFlow,作为深度学习领域的核心引擎,其性能与科研服务器的配置息息相关。
2025-01-05 23:51:17
485
原创 LAMMPS科研服务器配置深度解析
特别是在模拟纳米材料的原子扩散等任务时,充足的内存将避免计算进程的卡顿和崩溃,确保模拟的准确性和效率。Ubuntu、CentOS等发行版均支持LAMMPS的安装和运行,其中Ubuntu 18.04及以上版本因其完善的软件包管理和广泛的社区支持,成为首选。然而,在选择GPU时,需确保其与LAMMPS软件版本的兼容性,并考虑服务器的电源供应和散热系统需求。只有这样,才能确保LAMMPS在科研工作中稳定高效地运行,助力科研人员在分子动力学模拟领域取得卓越的研究成果,推动相关学科的不断发展。
2024-12-31 16:48:12
756
原创 英伟达豪掷7亿!揭秘AI初创公司Run:ai的收购内幕
这不仅有助于英伟达巩固其在AI技术领域的领先地位,还为其未来的增长提供了新的动力。通过整合Run:ai的技术,英伟达可以为企业用户提供更多的管理人工智能工作负载的选择,从而满足日益增长的需求。Run:ai专注于开发云计算软件平台,其提供的云平台允许用户访问高性能的GPU和其他计算资源,以加速AI模型的训练和推理过程。英伟达和Run:ai之间的合作始于2020年,当时Run:ai就已经在使用英伟达的芯片。近日,这家芯片巨头宣布完成了对以色列AI初创公司Run:ai的收购,这一举措引起了业界的广泛关注。
2024-12-31 10:31:05
356
原创 COMSOL科研服务器配置精析:确保仿真高效与精准
高端英特尔®至强®金牌和铂金处理器拥有六个内存通道,采用CPU到CPU互连技术,适用于大量内存或并行仿真场景,增加CPU数量可显著提升性能。助力科研人员在学术道路上不断前行,取得更丰硕成果,在科研领域发挥更大价值,适应日益复杂和高精度的科研仿真需求,为科学技术创新发展奠定坚实基础。内存配置上,常规仿真任务以16GB内存为基础,但面对复杂模型和大规模计算时,则需32GB甚至64GB以上的内存。COMSOL在模型构建、求解运算等环节对内存需求巨大,充足内存可确保仿真流畅,避免卡顿和崩溃。
2024-12-30 17:31:04
418
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人