数据结构——初识二叉树

目录

树的简介

概念

树的相关概念

树的表示

二叉树

概念

 特殊的二叉树

1. 满二叉树

2. 完全二叉树

二叉树性质

二叉树的存储结构


树的简介


概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因 为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

有一个特殊的结点,称为根结点,

根节点没有前驱结点 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继 。

因此,树是递归定义的。

 注意

(1).子树不相交

(2).除了根节点,其他节点有且仅有一个节点

(3).一颗n个节点的树有n-1条边


树的相关概念

 节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6 叶节点或终端节点:

度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点

非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点

双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点

孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点

兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点

树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;

树的高度或深度:树中节点的最大层次; 如上图:树的高度为4

堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点

节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先

子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙

森林:由m(m>0)棵互不相交的树的集合称为森林;


树的表示

树的表示方法有很多种,其中最常用的便是孩子兄弟表示法

typedef int DataType;
struct Node
{
 struct Node* _firstChild1; //第一个孩子节点
 struct Node* _pNextBrother; //下一个兄弟节点
 DataType _data; //数据
};



二叉树


概念

一棵二叉树是结点的一个有限集合,该集合:

1. 或者为空

2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成

由此可知,二叉树不存在度大于2的节点。

注意:二叉树的子树有左右之分。


 特殊的二叉树

1. 满二叉树

一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是 说,如果一个二叉树的层数为K,且结点总数是 ,则它就是满二叉树。

2. 完全二叉树

完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K 的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对 应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。


二叉树性质

1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点。

2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1。

3. 对任何一棵二叉树, 如果度为0其叶结点个数为n0, 度为2的分支结点个数为n2,则有 n0=n2+1

4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h= .log(n+1)

5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

双亲序号:(i-1)/2

左孩子序号:2i+1

右孩子序号:2i+2


二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

finish_speech

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值