华为AI认证必刷题100道(上)

  1. 调用语音识别服务成功后,在返回的信息中,(text)字段包含了识别结果
  2. 利用华为云服务可以将广告进行分类,这是应用了华为云的语言(分类)服务。
  3. 使用ModelArts自动学习构建预测分析项目时,除标签列外数据集中至少还应包含(2)个有效特征列。(请输入数字)
  4. 华为全栈全场景AI解决方案中使用的芯片架构是(达芬奇)
  5. 华为全栈全场景AI解决方案中华为自研的深度学习框架是(MindSpore)
  6. 在使用OpenCV读取图片时,默认图像颜色空间为BGR,可通过以下代码转换为HSV,请补齐代码,使其能正常运行:imhsv=cv2.cvtColor(im.cv2.(COLOR BGR2HSV)
  7. (条件随机场)取消了HMM的两个独立假设,把标签转移和上下文输入都当作全局特征之一,在全局进行概率归一化解决了HMM的标签偏置和上下文特征缺失问题。
  8. 以下代码直接调用OpenCV的AP对图像进行中值滤波处理,请补齐代码,以便其可以正常运行:im medianblur =cv2.(medianBlur)(imm,5)
  9. 图像数字化包括采样和(量化)
  10. 现有一张图片,假设左下角像素的坐标为(0,0),A点坐标为(15,24),B点坐标为(43,43),那么AB两点的曼哈顿距离是(47)
  11. Jupyter Notebook:开发环境 数据管理:数据集 训练作业:训练管理 模型转换:模型管理
  12. Transformer模型中没有卷积、循环结构,残差块、正则层、前馈神经网络都有
  13. 在ModelArts平台中,(Al Gallery)服务是给开发者提供一个可以相互交流,分享模型、数据集的平台
  14. 在人为设置了锐化算子之后,可以调用openCV的方法来进行滤波操作,以下代码是滤波操作代码,其中sharpen1为一个二维拒阵,请补齐代码。以便其可以正常运行:im sharpen1=cv2.(filter2D)(imm,-1,sharpen1)。
  15. 在常见的视频格式中,720P代表视频的垂直分辨率为720行(高度)
  16. (TextCNN)是一种使用卷积神经网络专门对文本进行分类的模型。
  17. 在求损失值对参数的偏导时,由于要使用(链式)求导法则,当网络权值和导数小于1且网络层数较多时,容易产生梯度消失问题。
  18. 图像预处理实验中,需要使用OpenCV库,import cv2之后,转化opencv的原始颜色空间为RGB,使用的代码是:cv2.(cvtColor)(image,cv2.COLOR.BGR2RGB).
  19. 在随机梯度下降法中,每次更新的时候只考虑(1)个样本点。
  20. Laplacian梯度算子属于(2)阶梯度算子
  21. R-CNN是(2)-stage目标检测算法:(阿拉伯数字填写)
  22. 采样间隔越小,意味着单位长度内的采样点(即像素)数量越多,图像的数据量就越大,从而可以捕捉到更多的细节信息。
  23. 使用ModelArts自动学习构建图像分类项目时,用于训练的图片至少有(2)种以上的分类,每种分类的图片数不少于(5)张。
  24. MoXing是华为云ModelArt;服务提供的网络模型开发API,利用MoXing中的mox.ie模块,调用API可以直接访问OBS中的文件,操作命令和Python中的O5模块以及TensorFlow中的gfile模块有对应关系,其中mox.file.exists对应tf.gfile.(Exists)0。
  25. 请对ModelArts数据集管理流程进行排序。创建数据集、数据处理、导入数据、数据标注、数据集发布
  26. 在使用OpenCV保存图片时,使用了以下代码,请补齐代码,使其能正常运行,cv2.(imwrite)("lena.jpg’,im).
  27. 华为全核全场景AI解决方案应用使能层中提供全流程服务的是(ModelArts)服务
  28. 调用API接口使用华为云语音交互服务,返回的结果为(JSON)格式。
  29. AlphaGo(游戏决策);GeepSpeech2(语音识别);BERT(阅读理解);ResNet(图像识别)。ResNet是CNN。
  30. 伽马矫正中y的值距离(1)越远,伽马矫正的变换强度越大。
  31. 华为云人脸识别服务,要求图片大小小于8MB,由于过大图片会导致时延较长,并且图片信息量不大,建议小于1MB;图片分辨率小于40964096,图片中人脸像素大于8080,建议120*120以上。
  32. (Haar)特征和Adaboost算法搭配使用,在人脸检测中有良好的效果
  33. (HMM)的三个主要问题包括评价问题、解码问题、学习问题。(请填写英文缩写)
  34. 使用OpenCV可以直接对图像进行镜像操作,补齐以下水平镜像的代码:im_flip=cv2.flip(im,(1))
  35. 使用显性编程来解决问题(基于规则的方法);
  36. 对大量未知标注的数据,按数据的内在相似性,将数据划分为多个类别(聚类);
  37. 在一个任务中,试图让学习其自动地对大量未标记数据直接帮助少量有标记数据进行模型训练(半监督学习);
  38. 规则由机器自动学习得到(机器学习)。
  39. 语音识别预处理手段:静音切除、降噪、平滑、标准化。不包括去重
  40. 在Tensorflow2.0中,构建Attention机制的时候,使用softmax函数得到attention权重,则应该使用tensorflow.nn.(softmax)方法。
  41. MoXing是华力云ModelArts服务提供的网络模型开发AP!,利用MoXing中的mox.ile模块,调用API可以直接访问OBS中的文件,操作命令和Pthon中的OS模块以及TensorFlow中的gfile模块有对应关系,其中mmox,file.isdirectory对应os.path.(isdir)。
  42. 通常语音识别所采用语音信号的采样频率为8KHz或16KHz,以8KHz来说,若长度为256个采样点,则对应的时间长度是
  43. (32)ms AlexNet使用了(ReLU)作为激活函数。
  44. 用户可以通过创建(子用户)或者访问密钥为ModelArts添加访问授权。
  45. tensorflow.keras中Embedding层的作用是把输入的每个词(或字) 从对应的id转换成对应的词向量。
  46. 在人为设置了锐化算子之后,可以调用openCV的方法来进行滤波操作,以下代码是滤波操作代码,其中sharpen 1为一个二维拒阵,请补齐代码。以便其可以正常运行:im sharpen1=cv2.(filter2D)(im,-1,sharpen 1)。
  47. 克劳德·香农被营为信息论之父
  48. CBOW不是利用中心词预测上下文的词。
  49. 图像预处理实验中,需要使用OpenCV库,importcv2之后,转化opencv的原始颜色空间为RGB,使用的代码是:cv2.(cvtColor)(image.cv2.COLOR BGR2RGB).
  50. 张量计算单元不是昇腾AI芯片AI Core中的基础计算资源
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值