- 博客(74)
- 资源 (2)
- 问答 (1)
- 收藏
- 关注
原创 AI新闻吧01_2021的人工智能会发生什么?
欢迎来到第01期的AI新闻吧,我们来聊聊小米11的影像系统,特斯拉的降价以及大佬们关于2021年的AI。AI新闻吧,每篇有启发!小米11计算摄影小米11的拍照使用到了一亿像素,并且搭载了各种黑科技,其中有一项是计算摄影,很多用户不知道计算摄影是什么意思,让很多用户都想要一探究竟,那么小米11计算摄影是什么意思?计算摄影言简意赅的说它是一种数字处理技术,可以从成像机理上来改进传统手机相机,并将硬件设计与软件计算能力有机结合,全方位地捕捉真实世界的场景信息。通过改善色彩和照明效果,并可以将局部的细节从黑暗
2021-01-10 17:32:05 373
原创 Python进阶16_字符串基础操作
前面介绍了一下比较晦涩而且深入的字符文本的处理方法,接下来几节将带来一些常规的操作。比较容易入手。字符串处理字符串字面量字符字面量的通过使用:以单引号开始和结束,但是如何处理的是字符串内使用单引号。例如:'That is Wali's cat双引号字符字面量的还可以通过使用:双引号开始和结束,这样就可以处理字符串内使用单引号的问题.如下:"That is Wali's cat"转义...
2019-10-25 17:55:50 300
原创 深度学习笔记16_猫狗案例优化_使用预训练模型(fine-tuning)
模型微调概念微调是指将其顶部的几层“解冻”,并将这解冻的几层和新增加的部分联合训练。详细的理解见下图[外链图片转存失败(img-ih2x0XIm-1569374299326)(https://upload-images.jianshu.io/upload_images/19296570-9e2d990bdaf2d549.jpg?imageMogr2/auto-orient/strip%7Cim...
2019-10-21 10:26:28 578
原创 深度学习笔记15_猫狗案例优化_使用预训练模型(迁移学习)
选择预训练模型将深度学习应用于小型图像数据集,一种常用且非常高效的方法是使用预训练网络。预训练网络(pretrained network)是一个保存好的网络,之前已在大型数据集(通常是大规模图像分类任务)上训练好。这个方法也叫迁移学习。预训练的模型学到的特征的空间层次结构可以有效地作为视觉世界的通用模型较低层学到的结构都是一些点线等低层次的特征,这里使用的预训练的模型的数据是 Im...
2019-10-09 10:03:26 609
原创 深度学习笔记14_猫狗分类案例优化 - 数据增强
猫狗分类案例优化 - 数据增强数据增强的基本概念**数据增强:**利用多种数字图像处理方法(旋转,剪切,错切,缩放,翻转,边缘填充)生成可信图像.其目标是,模型在训练时不会两次查看完全相同的图像。这让模型能够观察到数据的更多内容,从而具有更好的泛化能力。在keras中可以通过:ImageDataGenerator函数来实现图像的随机变换.rotation_range 是角度值(在 0~...
2019-09-29 08:58:08 1259
原创 Python进阶14_Unicode排序
Unicode文本排序内置方法python中提供了标准的排序方法但是在内置的方法可能带来一个不好的结果,尤其是比较非 ASCII 字符时。例如下面的例子.由于不同的区域才去的排序规则不一样,下面的例子实际的排序是这样子的:['açaí', 'acerola', 'atemoia', 'cajá', 'caju']而现在的排序结果确实这样子的:['acerola', 'atemoia', ...
2019-09-27 10:15:20 1970 1
原创 深度学习笔记17_卷积神经网络数据可视化_中间激活
可视化的概念深度学习模型是“黑盒”,即模型学到的表示很难用人类可以理解的方式来提取和呈现。但是我们现在的学习的卷积伸进网络却可以通过可视化很形象的说明深度学习在卷积神经网络方面可以很表示的,并不是黑盒。目前比较容易理解的三种可视化的方法如下:可视化卷积神经网络的中间输出(中间激活)就是可以展示网络中各个卷积层和池化层输出的特征图理解卷积神经网络连续的层如何对输入进行变换于初步了解卷...
2019-09-25 17:49:58 1523
原创 深度学习笔记13_猫狗分类案例 - 从头开始训练一个神经网络
在小型数据集上从头开始训练一个卷积神经网络小型数据集的模型构建的策略小型数据集:“很少的”样本可能是几百张图像,也可能是几万张图像。接下来的示例中,主要用来猫狗分类:4000张图片(2000猫,2000狗)训练数据为:2000验证数据:1000测试数据:1000对于小型数据集的基本策略如下:据从头开始训练一个新模型,不做任何正则化,为模型目标设定一个基准,这里大概为71的精度...
2019-09-25 09:19:20 4007 1
原创 Python进阶13_字符编码器
字符编码器常见的编码器Python 自带了超过 100 种编解码器(codec,encoder/decoder),用于在文本和字节之间相互转换。 例如:‘utf_8’,‘utf_16’…需要设置编码器参数的主要用于如下函数:open()str.encode()bytes.decode()如下实例:# 不同的编码的格式for codec in ['latin_1','utf-8...
2019-09-24 09:37:09 425
原创 Python进阶12_python中的字符与字节
python中的字符与字节字符和Unicode字符是什么,怎么表示什么字符的编码和解码python中有什么字节类型如何创建字节字节有哪些方法何应用python中字符的定义字符的基础概念**字符串:**由字符组成的序列什么是字符呢?字符: python中的定义是Unicode字符,在python3中,str对象中获取的元素是Unicode字符在python2中,str对...
2019-09-20 09:09:51 488
原创 深度学习笔记12_卷积神经网络
卷积神经网络Keras 中的卷积神经网络的搭建主要利用keras中的两个函数进行构建:Conv2Dfilters: Integer, the dimensionality of the output space(i.e. the number of output filters in the convolution).kernel_size: An integer or tuple...
2019-09-19 09:09:25 455 1
原创 Python进阶11_字典dict和集合set的秘密
本节你将看到关于字典dict和集合set更加深入的原理,尤其是关于散列在其中的作用,将回答以下问题:Python 里的 dict 和 set 的效率有多高?为什么它们是无序的?为什么并不是所有的 Python 对象都可以当作 dict 的键或 set 里的元素?为什么 dict 的键和 set 元素的顺序是跟据它们被添加的次序而定的,为什么不应该在迭代循环 dict 或是 set 的同...
2019-09-18 09:24:32 183
原创 深度学习笔记11_机器学习工作流程
机器学习工作流程定义问题,收集数据集定义问题你的输入数据是什么?你要预测什么?你面对的是什么类型的问题?确定问题类型有助于你选择模型架构、损失函数等是二分类问题、多分类问题、标量回归问题、向量回归问题还是多分类、多标签问题比如聚类、生成或强化学习收集数据集两个假设:假设输出是可以根据输入进行预测的。假设可用数据包含足够多的信息,足以学习输入和输出之间的关系。非...
2019-09-17 09:42:55 165
原创 Python进阶10_集合set的使用
不可变映射类型标准库里所有的映射类型都是可变的,从 Python 3.3 开始,types 模块中引入了一个封装类名叫 MappingProxyType。只需要给它一个映射,它会返回一个只读的映射类型。但是如果修改了原有的映射,其也会动态跟着一起被修改。自己不被修改,原形被修改了,自己跟着一起被改。coding 实例如下from types import MappingProxyTyp...
2019-09-16 08:40:52 195
原创 Python进阶09_你知道吗?还有好多字典类型
其他的字典类型这些字典类型都市在collections 标准模块中主要有如下:前面见过的:defaultdict 用来处理不存在键OrderedDict:用来保持顺序的ChainMap:用来容纳个数不同的映射对象Counter:用来计数UserDict:方便用户自定义自己的映射类型OrderedDict 与ChainMapOrderedDict在添加键的时候会保持顺序,因此键...
2019-09-12 09:21:44 166
原创 深度学习笔记10_如何处理过拟合
过拟合与欠拟合过拟合的现象:模型在留出验证数据上的性能总是在几轮后达到最高点,然后开始下降。欠拟合的现象:训练数据上的损失越小,测试数据上的损失也越小优化与泛化的概念优化: 指调节模型以在训练数据上得到最佳性能泛化: 是指训练好的模型在前所未见的数据上的性能好坏,机器学习的目的当然是得到良好的泛化。如何解决过拟合的问题最优解决方法是获取更多的训练数据次优解决方法是正则化:调节模型...
2019-09-11 16:39:40 491
原创 深度学习笔记09_机器学习数据预处理
数据预处理、特征工程神经网络的数据预处理预处理的原则:是使原始数据更适于用神经网络处理,主要包括:向量化,标准化,处理缺失值和特征提取向量化无论处理什么数据(声音、图像还是文本),都必须首先将其转换为张量,且张量是浮点数据类型。例如, one-hot 编码将其转换为 float32 格式的张量。值标准化一般的值标准化做法对每个特征分别做标准化,使其均值为 0、标准差为 1。例如,图像...
2019-09-10 09:30:08 284
原创 Python进阶08_字典推导以及处理字典中不存在的键
字典推导(diccomp)可以从任何以键值对作为元素的可迭代对象中构建出字典。一般可以将元组的列表利用推导变成字典的数据类型。coding如下country_code = {country:code for code,country in dial_codes}推导的时候利用{}在for之前要定义好格式:谁是键,谁是值在for中也要将对应的参数放进去:code,countrydi...
2019-09-09 11:47:42 2157
原创 深度学习笔记08_机器学习模型评估
机器学习的四个分支二分类问题、多分类问题和标量回归问题。这三者都是监督学习(supervised learning)的例子,其目标是学习训练输入与训练目标之间的关系。监督学习给定一组样本(通常由人工标注),它可以学会将输入数据映射到已知目标[也叫标注(annotation)]。监督学习的分类:分类:对数据进行分类回归:对数据进行拟合序列生成:给定一张图像,预测描述图像的文字。语法...
2019-09-06 09:10:16 192
原创 Python进阶07_泛映射类型
字典是Python的基石,与它相关的内置函数都在__builtins__.__dict__模块中。想要理解和掌握背后的原理就需要理解散列表。泛映射类型collections.abc 模块中有 Mapping 和 MutableMapping这两个抽象基类,作用是为dict 和其他类似的类型定义形式接口。具体模块如下UML图。什么是广义的映射类型广义上的映射一般继承Mapping 和 Mu...
2019-09-05 09:09:50 374
原创 深度学习笔记07_预测波士顿房价-回归问题案例
预测波士顿房价-回归问题案例问题描述:回归问题是机器学习常见的问题,它预测一个连续值而不是离散的标签,例如,根据气象数据预测明天的气温,或者根据软件说明书预测完成软件项目所需要的时间注意的地方: logistic 回归不是回归算法,而是分类算法。祥见logistic 回归数据加载本节将要预测 20 世纪 70 年代中期波士顿郊区房屋价格的中位数,已知当时郊区的一些数据点,比如犯罪率、当地房...
2019-09-04 08:57:10 1850
原创 Python进阶06_除了列表,还有谁谁谁
除了列表,还有谁谁谁数组何时使用数组:需要一个只包含数字的列表;数组可以做什么:支持所有跟可变序列有关的操作,包括 .pop、.insert 和 .extend提供从文件读取和存入文件的更快的方法,如 .frombytes 和 .tofile如何创建数组创建数组需要一个类型码,这个类型码用来表示在底层的 C 语言应该存放怎样的数据类型。b 类型码代表的是有符号的字符数组的...
2019-09-03 09:33:23 159
原创 Python进阶05_列表排序和查找方法
列表中的两个排序方法list.sort 排序list.sort 排序直接对list本身进行排序,不会新建一个新的列表,也就是说不会复制一份原有的列表,返回只仅仅是一个None,仅仅是将list的元素进行一次排序。Python的惯例如果一个函数或者方法对对象进行的是就地改动,那它就应该返回None,好让调用者知道传入的参数发生了变动,而且并未产生新的对象。例如,random.shuffle...
2019-09-02 11:59:36 385
原创 深度学习笔记06_新闻分类-多分类问题
新闻分类:多分类问题本节任务描述:将路透社新闻划分为 46 个互斥的主题。因为有多个类别,所以这是多分类(multiclass classification)问题的一个例子。这是单标签、多分类(single-label, multiclass classification) 问题的一个例子。如果每个数据点可以划分到多个类别(主题),那它就是一个多标签、多分类(multilabel,multi...
2019-08-31 23:02:23 492
原创 Python进阶04-序列切片和增量的高级用法
切片的高级用法为什么忽略最后一个元素在切片的操作中都不会包含最后一个元素,比如b[0:3]:b[0],b[1],b[2]。这样做的目的是:符合Python、C 和其他语言里以 0 作为起始下标的传统。好处有:当只有最后一个位置信息时,我们也可以快速看出切片和区间里有几个元素array[:5],返回5个元素当起止位置信息都可见时,计算出切片和区间的长度:a[1:4],4-1=3,cou...
2019-08-29 09:04:54 280 1
原创 深度学习笔记(5) - 二分类问题案例 - 电影评论分类
二分类问题案例 - 电影评论分类在这个例子中,你将学习根据电影评论的文字内容将其划分为正面或负面。IMDB 数据集IMDB 数据集,它包含来自互联网电影数据库(IMDB)的 50 000 条严重两极分化的评论。数据集被分为用于训练的 25 000 条评论与用于测试的 25 000 条评论,训练集和测试集都包含 50% 的正面评论和 50% 的负面评论。IMDB 数据集也内置于 Keras ...
2019-08-28 09:06:14 1726
原创 深度学习笔记(4) - 神经网络结构
神经网络结构神经网络结构主要包含以下几个方面:层: 多个层组合成网络(或模型)输入数据和对应的目标: 训练的数据包含标签数据损失函数: 判断当前模型的质量程度优化器: 用于更新网络的参数多个层链接在一起组成了网络,将输入数据映射为预测值。然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预测值与预期结果的匹配程度。优化器使用这个损失值来更新网络的权重。层:深度学习的...
2019-08-27 10:57:39 480
原创 Python进阶03_元组的理解
元组的理解元组的两大功能作为不可变列表作为数据记录元组和记录元组其实是对数据的记录:元组中的每个元素都存放了记录中一个字段的数据,外加这个字段的位置。正是这个位置信息给数据赋予了意义。如果在任何的表达式里我们在元组内对元素排序,这些元素所携带的信息就会丢失,因为这些信息是跟它们的位置有关的。元组的记录功能:通过数量和位置信息体现,拆包让元组可以完美地被当作记录来使用。gp...
2019-08-26 08:21:55 175
原创 Python进阶02_序列类型及列表推导
序列类型及列表推导Python不管是哪种数据结构,字符串、列表、字节序列、数组、XML 元素,抑或是数据库查询结果,它们都共用一套丰富的操作:迭代、切片、排序,还有拼接。内置序列类型根据存放数据类型分类容器序列list,tupel,collections.deque存放不同类型的数据所包含的任意类型的对象的引用扁平序列str,bytes, bytearray, memory...
2019-08-24 16:50:28 212
原创 Python进阶01_数据模型
数据模型python的纸牌风格通过实现特殊方法来利用 Python 数据模型的两个好处:作为你的类的用户,他们不必去记住标准操作的各式名称可以更加方便地利用Python的标准库,比如random.choice 函数,从而不用重新发明轮子import collections# namedtuple 用以构建只有少数属性但是没有方法的对象Card = collections.nam...
2019-08-23 09:47:50 162
原创 深度学习笔记(3) - 梯度优化
梯度优化基本概念权重权重: 又称为可训练参数(trainable parameter),分别对应 kernel 和 bias 属性。随机初始化(random initialization): 赋值为权重矩阵取较小的随机值训练/学习: 逐渐调节权重的过程具体步骤如下:抽取训练样本 x 和对应目标 y 组成的数据批量。在 x 上运行网络[这一步叫作前向传播(forward pass)...
2019-08-22 08:57:23 432
原创 深度学习笔记(2) - 神经网络的数学基础
神经网络的数学基础数学概念:张量、张量运算、微分、梯度下降。构建一个数字识别的神经网络from keras.datasets import mnist# 训练集: train_images,train_labels# 测试集:test_images,test_labels(train_images,train_labels),(test_images,test_labels) = m...
2019-08-20 17:16:50 1008
原创 01-深度学习的基础概念
文章目录深度学习的基础概念人工智能、机器学习与深度学习机器学习深度学习深度学习工作原理机器学习简史概率建模早期神经网络核方法决策树、随机森林与梯度提升机回到神经网络深度学习为什么现在火硬件数据集和基准算法上的改进深度学习的基础概念人工智能、机器学习与深度学习人工智能的概念: 努力将通常由人类完成的智力任务自动化。人工智能、机器学习与深度学习三者的关系机器学习机器学习系统是训练出来的,...
2019-08-19 10:19:32 230
原创 数组和指针
KeyPoint:数组和指针两者的关系如何?数组也有迭代器,比起vector迭代器有哪些不同?数组长度计算的几种方法?1.数组与指针的关系在编译器层面,数组就是指针 可以通过取数组元素的地址符来获得数组的元素int arr[] = {1,2,3};int *p = &arr[0]; 但是更加一般的做法直接使用
2017-02-13 11:52:34 496
原创 数组基础
1.数组与vector 数组vector容器大小必须固定自由添加性能对于某些应用起来性能较好对于某些应用起来性能较差引用对象元素不允许存放引用对象元素不允许存放引用对象定义和初始化默认初始化,有元素默认初始化,为空没有元
2017-01-22 16:57:36 791
原创 迭代器基础和使用
1.迭代器简介什么是迭代器是一种检查容器内元素并遍历元素的数据类型迭代器的主要功能其主要功能是来访问标准库中容器的元素字符串可以使用迭代器,可以近似把字符串看作是字符的容器迭代器有有效和无效之分2. 使用迭代器begin和endbegin表示获得指向第一个元素的迭代器svec不包含任何元素,空vec
2017-01-12 08:45:55 837
原创 vector基础使用
1. vector基本操作简介学习这些东西一定要学会利用自己已经的东西来推广到未知的知识了解。所以我们可以利用上一节的string知识来学习vector.因为string本质上就是一个容器,只不过这个容器只能存放字符而已。而vector这是一个更大范围的容器,它基本上可以看做成无所不包的容器! 访问vector对象使用range for语句来获得,同string
2017-01-10 08:48:19 1014
原创 读取JPG图片的Exif属性(三) - Exif属性读取GPS信息代码(C/C++实现)
Exif中GPS格式本文是最后一篇关于Exif文章,终于要挑战最大的boss了,这个GPS信息的读取,我找了国内外很多资料都没有找 真正的实例。所以自己前两篇的基础上推断而来的。读取JPG图片的Exif属性 - Exif信息简介读取JPG图片的Exif属性 - C代码实现 其实这个只要能够理解前面两篇的内容也就很容易获得GPS信息,但是还是要理解GPS的格式和各种tag参数。可
2017-01-06 09:12:17 16697 50
原创 读取JPG图片的Exif属性(二) - C代码实现
读区Exif属性简介 读取Exif基本上就是在懂得Exif的格式的基础上,详细见上文:Exif 学习心得 - Exif 基础学习,然后就是对图片的数据进行字节分析了。这个分析也是非常重要的,就是一个一个字节来分析图片的Exif属性,一般这段字节就是图片的开始部分。可以使用 工具将JPG图片按照16进制的格式打开,然后在对着图片来分析。 由于国内关于此部分
2017-01-05 16:42:37 9608 5
原创 vector的基础语法
1. vector基础介绍需要添加头文件#include添加命名空间 using std::vectorvector是什么是一个集合是一个容器就是用来存放对象的集合/容器,而且每个对象的类型是一样的 比如可以存放int类型对象,就不让你不能装string类型对象vector如何申明通过在vector后面添
2017-01-05 09:03:41 2920
C#中利用线程触发button事件后,是否可在button 中Abort线程?
2015-03-05
TA创建的收藏夹 TA关注的收藏夹
TA关注的人