深度学习笔记(2) - 神经网络的数学基础

神经网络的数学基础

数学概念:张量、张量运算、微分、梯度下降。

深度学习中的数据概念

张量

常见的张量类型

张量: 它是一个数据容器,模型中最基本的数据结构,比如,矩阵(2维张量)

标量(0D张量)
标量: 仅仅包含一个数字的张量(标量张量,零维张量,0D张量)在 Numpy中,一个 float32 或 float64 的数字,可以通过ndim属性来查询轴的个数。

向量(1D张量)
向量:数字组成的数组,只有一维,一个轴

矩阵(2D 张量)
由向量组成的数组叫矩阵,只有二维,两个轴
第一个轴上的元素叫作行(row),第二个轴上的元素叫作列(column)

3D 张量与更高维张量
将多个矩阵组合成一个新的数组,可以得到一个 3D 张量,直观地理解为数字组成的立方体,深度学习处理的一般是 0D 到 4D 的张量,但处理视频数据时可能会遇到 5D 张量。

# 标量(0D张量)
import numpy as np
x  = np.array(12)
print(x)
print(x.ndim)

# 向量(1D张量)
x = np.array([12,3,6,12,1])
 # 5D向量
print(x)
print(x.ndim)

#矩阵(2D 张量)
x = np.array([[12,3,6,12,1],
            [8,12,23,34,1]])
print(x)
print(x.ndim)

#3D 张量与更高维张量

x = np.array([[[12,3,6,12,1],
            [8,12,23,34,1]],
              [[12,3,6,12,1],
            [8,12,23,34,1]]])
print(x)
print(x.ndim)

12
0
[12  3  6 12  1]
1
[[12  3  6 12  1]
 [ 8 12 23 34  1]]
2
[[[12  3  6 12  1]
  [ 8 12 23 34  1]]

 [[12  3  6 12  1]
  [ 8 12 23 34  1]]]
3
张量类型的关键属性

轴的个数(阶数) 3D 张量有 3 个轴,矩阵有 2 个轴。这在 Numpy 等 Python 库中也叫张量的 ndim
形状 这是一个整数元组,表示张量沿每个轴的维度大小(元素个数)。前面矩阵示例的形状为 (3, 5),3D 张量示例的形状为 (3, 3, 5)
数据类型 这是张量中所包含数据的类型,例如,张量的类型可以是 float32、uint8、float64 等。

# mnist数据的格式
from keras.datasets import mnist
(train_images,train_labels),(test_images,test_labels) = mnist.load_data()

# 轴的个数,阶数
print(train_images.ndim)

# 形状
print(train_images.shape)

# 数据类型
print(train_images.dtype)

# 利用Matplotlib来显示3D数据
digit = train_images[4]

import matplotlib.pyplot as plt
plt.imshow(digit,cmap=plt.cm.binary)
plt.show()
3
(60000, 28, 28)
uint8
numpy中操作张量

张量切片
选择张量的特定元素,
选择单个样本:train_images[4]
选择多个样本:train_images[10:100]

批量数据(batch)

深度学习中所有数据张量的第一个轴(0 轴,因为索引从 0 开始)都是样本轴(samples axis,有时也叫样本维度)。

mini batch
深度学习模型不会同时处理整个数据集,而是将数据拆分成小批量(mini batch)

batch = train_images[:128]
batch = train_images[128:256]
batch = train_images[128 * n:128 * (n + 1)]

这是一种常见的处理数据的方法,如下就用到了该方法,每次训练的时候,使用128个样本数据进行训练
network.fit(train_images,train_labels,epochs=5,batch_size=128)
batch_size=128:128个样本数据进行一次迭代
第一个轴(0 轴)叫作批量轴(batch axis)或批量维度(batch dimension)

常用的数据张量
  • 向量数据:2D 张量,形状为 (samples, features)。
  • 时间序列数据或序列数据:3D 张量,形状为 (samples, timesteps, features)。
  • 图像:4D 张量,形状为 (samples, height, width, channels) 或 (samples, channels, height, width)。
  • 视频:5D 张量,形状为 (samples, frames, height, width, channels) 或 (samples, frames, channels, height, width)。

向量数据2D
其中第一个轴是样本轴,第二个轴是特征轴,例如人口统计数据集,其中包括每个人的年龄、邮编和收入,。每个人可以表示为包含 3 个值的向量,100个人可以写成(100,3)。

时间序列数据或序列数据3D
当时间(或序列顺序)对于数据很重要时,应该将数据存储在带有时间轴的 3D 张量中.

时间序列数据

图像数据4D
图像通常具有三个维度:高度、宽度和颜色深度,加上批量的数据
图像数据

通道在后(channels-last)的约定(在 TensorFlow 中使用)和通道在前(channels-first)的约定(在 Theano 中使用)。

视频数据5D
视频可以看作一系列帧,每一帧都是一张彩色图像。由于每一帧都可以保存在一个形状为 (height, width, color_
depth) 的 3D 张量中,,因此一系列帧可以保存在一个形状为 (frames, height, width, color_depth) 的 4D 张量中,而不同视频组成的批量则可以保存在一个 5D 张量中,其形状为(samples, frames, height, width, color_depth)。

my_slice = train_images[10:100]
print(my_slice.shape)
(90, 28, 28)

张量运算(tensor operation)

深度神经网络学到的所有变换也都可以简化为数值数据张量上的一些张量运算
例如:
keras.layers.Dense(512, activation='relu'): output = relu(dot(W, input) + b)

element-wise向量元素的运算

该运算独立地应用于张量中的每个元素,也就是说,这些运算非常适合大规模并行实现。利用numpy 可以很方便实现向量之间的元素的运算。

import numpy as np

z = x + y  # 逐个元素相加
z = np.maximum(z,0.)    # 逐个元素的relu

import numpy as np

def naive_relu(x):
    assert len(x.shape) == 2
    
    x = x.copy()
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            x[i,j] = max(x[i,j],0)
    return x


def naive_add(x,y):
    assert len(x.shape) == 2
    assert x.shape == y.shape
    
    x = x.copy()
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            x[i,j] += y[i,j]
    return x

x = np.array([[1,2],[3,-1],[0,2]])
y = np.array([[1,3],[3,-1],[1,2]])
x = naive_relu(x)
z = naive_add(x,y)
print('x:\n',x)
print('z:\n',z)
x:
 [[1 2]
 [3 0]
 [0 2]]
z:
 [[ 2  5]
 [ 6 -1]
 [ 1  4]]

广播

**广播:**用来实现两个shpae不一样的张量相加。
广播实现的步骤:

  1. 向较小的张量添加轴(叫作广播轴),使其 ndim 与较大的张量相同。
  2. 将较小的张量沿着新轴重复,使其形状与较大的张量相同。

说白了就是需要小张量的ndim与大张量的最后轴数要相同。例如

  • (32,10) 与 (10)
  • (64,3,32,10) 与 (32,10)
  • (a, b, … n, n+1, … m) 与 (n, n+1, … m)

例如:x(32,10), y(10,) 当计算:x+y时

  • 首先,给y添加一个轴,(1,10)
  • 然后,将y沿着新轴重复32次,变成(32,10)
import numpy as np

x = np.random.random((64,3,32,10))
y = np.random.random((32,10))

z = np.maximum(x,y)
print(z)
[[[[0.71013667 0.82969657 0.78225567 ... 0.39605762 0.42966385
    0.61052148]
   [0.9049391  0.46614795 0.73385268 ... 0.20526913 0.98638954
    0.42001967]
   [0.93415511 0.48489238 0.99644995 ... 0.70673411 0.25367595
    0.90680967]
   ...
   
   ...
   [0.95094247 0.68216775 0.87795427 ... 0.35327416 0.29307986
    0.63371694]
   [0.73031078 0.46058138 0.95667398 ... 0.67178032 0.8491274
    0.59926792]
   [0.84352022 0.56131958 0.54426988 ... 0.9812835  0.45293874
    0.61807189]]]]

张量点积

点积运算,也叫张量积,它将输入张量的元素合并在一起。

  • Numpy、Keras、Theano 和 TensorFlow 中,都是用 * 实现逐元素乘积
  • Numpy 和 Keras 中,都是用标准的 dot 运算符来实现点积
  • 数学符号中的点(.)表示点积运算

向量点积

  • 两个向量之间的点积是一个标量,对应的元素相乘再相加
  • 只有元素个数相同的向量之间才能做点积

矩阵点积

  • 两个矩阵之间的点积: x.shape[1] == y.shape[0]
    • (a,b) . (b,) ->(a)
    • (a,b) . (b,c) -> (a,c)

高维点积

  • 高维点积计算法则:
    • 只要其形状匹配遵循与前面 2D 张量相同的原则
    • (a, b, c, d) . (d,) -> (a, b, c)
    • (a, b, c, d) . (d, e) -> (a, b, c, e)

矩阵点积示意图:

矩阵点积示意图

# 两个向量 x 和 y 的点积
def naive_vector_dot(x,y):
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    assert x.shape[0] == y.shape[0]
    
    z = 0.
    for i in range(x.shape[0]):
        z += x[i] * y[i]
    return z

# 两个向量 x 和 y 的点积计算
import numpy as np

a = np.array([1,2,3])
b = np.array([4,5,6])

print(a*b)
print(np.dot(a,b))
print(naive_vector_dot(a,b))
[ 4 10 18]
32
32.0
# 对一个矩阵 x 和一个向量 y 做点积,返回值是一个向量

import numpy as np

def naive_matrix_vector_dot(x,y):
    assert len(x.shape) == 2
    assert len(y.shape) == 1
    assert x.shape[1] == y.shape[0]
    
    z = np.zeros(x.shape[0])
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            z[i] +=x[i,j]*y[j]
    return z
# 一个矩阵 x 和一个向量 y点积计算
import numpy as np

a = np.array([[1,2,3],[1,2,3]])
b = np.array([4,5,6])


print(np.dot(a,b))
print(naive_matrix_vector_dot(a,b))
[32 32]
[32. 32.]
# 两个矩阵之间的点积
def naive_matric_dot(x,y):
    assert len(x.shape) == 2
    assert len(y.shape) == 2
    assert x.shape[1] == y.shape[0]
    
    z = np.zeros((x.shape[0],y.shape[1]))
    for i in range(x.shape[0]):
        for j in range(y.shape[1]):
            row_x = x[i,:]
            column_y = y[:,j]
            z[i,j] = naive_vector_dot(row_x,column_y)
    return z
# 两个矩阵 x 和 y 的点积计算
import numpy as np

a = np.array([[1,2,3],[1,2,3]])
b = np.array([[4,5,6],[1,2,3],[1,1,1]])
print(np.dot(a,b))
print(naive_matric_dot(a,b))
[[ 9 12 15]
 [ 9 12 15]]
[[ 9. 12. 15.]
 [ 9. 12. 15.]]

张量变形

张量变形是指改变张量的行和列,以得到想要的形状,变形后的张量的元素总个数与初始
张量相同。

对矩阵做转置是指将行和列互换

# 张量变形
x = np.array([[0,1],
             [2,3],
             [4,5]])
print(x.shape)
x = x.reshape((6,1))
print(x)
x = x.reshape((1,6))
print(x)
# 转置
x = np.zeros((300,20))
x = np.transpose(x)
print(x.shape)
(3, 2)
[[0]
 [1]
 [2]
 [3]
 [4]
 [5]]
[[0 1 2 3 4 5]]
(20, 300)

深度学习的几何解释

对于张量运算所操作的张量,其元素可以被解释为某种几何空间内点的坐标。
通常来说,仿射变换、旋转、缩放等基本的几何操作都可以表示为张量运算。

神经网络完全由一系列张量运算组成,而这些张量运算都只是输入数据的几何变换。你可以将神经网络解释为高维空间中非常复杂的几何变换,这种变换可以通过许多简单的步骤来实现。

  • 机器学习的内容:为复杂的、高度折叠的数据流形找到简洁的表示
  • 深度学习特别擅长将复杂的几何变换逐步分解为一长串基本的几何变换
  • 深度网络的每一层都通过变换使数据解开一点点——许多层堆叠在一起,可以实现非常复杂的解开过程

形象的例子:

深度学习的例子

皱巴巴的纸球就是你的输入数据,每张纸对应于分类问题中的一个类别,神经网络(或者任何机器学习模型)要做的就是找到可以让纸球恢复平整的变换,从而能够再次让两个类别明确可分。

构建一个数字识别的神经网络

from keras.datasets import mnist

# 训练集: train_images,train_labels
# 测试集:test_images,test_labels
(train_images,train_labels),(test_images,test_labels) = mnist.load_data()
Using TensorFlow backend.
# 获得一些输入的信息
print(train_images.shape
print(len(train_images))
print(train_labels)
  File "<ipython-input-2-daa94cad9cfa>", line 3
    print(len(train_images))
        ^
SyntaxError: invalid syntax
# 构建模型
from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Dense(512,activation='relu',input_shape = (28*28,)))
network.add(layers.Dense(10,activation='softmax'))

#  损失函数(loss function)
#  优化器(optimizer)

# 需要监控的指标(metric)
network.compile(optimizer='rmsprop',
               loss = 'categorical_crossentropy',
               metrics=['accuracy'])
#准备数据
train_images = train_images.reshape((60000,28*28))
train_images = train_images.astype('float32')/255

test_images = test_images.reshape((10000,28*28))
test_images = test_images.astype('float32')/255


# 准备标签数据
from keras.utils import to_categorical

train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)



# 训练模型
network.fit(train_images,train_labels,epochs=5,batch_size=128)
WARNING:tensorflow:From D:\Anaconda3\envs\tfgpu\lib\site-packages\tensorflow\python\ops\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/5
60000/60000 [==============================] - 6s 92us/step - loss: 0.2559 - acc: 0.9246
Epoch 2/5
60000/60000 [==============================] - 1s 25us/step - loss: 0.1034 - acc: 0.9697
Epoch 3/5
60000/60000 [==============================] - 2s 26us/step - loss: 0.0680 - acc: 0.9798
Epoch 4/5
60000/60000 [==============================] - 2s 26us/step - loss: 0.0501 - acc: 0.9854
Epoch 5/5
60000/60000 [==============================] - 2s 25us/step - loss: 0.0381 - acc: 0.9885





<keras.callbacks.History at 0x235d8496240>
# 测试模型
test_loss,test_acc = network.evaluate(test_images,test_labels)
print('test_acc:',test_acc)
10000/10000 [==============================] - 0s 36us/step
test_acc: 0.9796

分享关于人工智能,机器学习,深度学习以及计算机视觉的好文章,同时自己对于这个领域学习心得笔记。想要一起深入学习人工智能的小伙伴一起结伴学习吧!扫码上车!

瓦力人工智能 - 扫我吧

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值