小美是美团仓库的管理员,她会根据单据的要求按顺序取出仓库中的货物,每取出一件货物后会把剩余货物重新堆放,使得自己方便查找。已知货物入库的时候是按顺序堆放在一起的。如果小美取出其中一件货物,则会把货物所在的一堆物品以取出的货物为界分成两堆,这样可以保证货物局部的顺序不变。
已知货物最初是按 1~n 的顺序堆放的,每件货物的重量为 w[i] ,小美会根据单据依次不放回的取出货物。请问根据上述操作,小美每取出一件货物之后,重量和最大的一堆货物重量是多少?
格式:
输入:
- 输入第一行包含一个正整数 n ,表示货物的数量。
- 输入第二行包含 n 个正整数,表示 1~n 号货物的重量 w[i] 。
- 输入第三行有 n 个数,表示小美按顺序取出的货物的编号,也就是一个 1~n 的全排列。
输出:
- 输出包含 n 行,每行一个整数,表示每取出一件货物以后,对于重量和最大的一堆货物,其重量和为多少。
示例:
输入:
5
3 2 4 4 5
4 3 5 2 1
输出:
9
5
5
3
0
解释:
原本的状态是 { {3,2,4,4,5}} ,取出 4 号货物后,得到 { {3,2,4},{5}} ,第一堆货物的和是 9 ,然后取出 3 号货物得到 { {3,2}{5}} ,此时第一堆和第二堆的和都是 5 ,以此类推。
提示:
1 <= n <= 50000
1 <= w[i] <= 100
解题思路
- 把整个处理过程逆序思考:小美按顺序将货物放入仓库中,每次判断放入那个连续的货物堆(或者自成一堆),且判断新生成的堆和是否更新货物堆最大重量
- 代码如下,需要维护 左边界-右边界 & 右边界-左边界 两个哈希表,放入 i 号货物,则查找 i - 1 是否为已存在的右边界,若有则合并;再判断 i + 1 是否为已存在的左边