描述
在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来。现在,Tom在第S号城市,他有张该国地图,他想知道如果自己要去参观第T号城市,必须经过的前一个城市是几号城市(假设你不走重复的路)。
输入
第一行输入一个整数M表示测试数据共有M(1<=M<=5)组
每组测试数据的第一行输入一个正整数N(1<=N<=100000)和一个正整数S(1<=S<=100000),N表示城市的总个数,S表示参观者所在城市的编号
随后的N-1行,每行有两个正整数a,b(1<=a,b<=N),表示第a号城市和第b号城市之间有一条路连通。
输出
每组测试数据输N个正整数,其中,第i个数表示从S走到i号城市,必须要经过的上一个城市的编号。(其中i=S时,请输出-1)
样例输入
1
10 1
1 9
1 8
8 10
10 3
8 6
1 2
10 4
9 5
3 7
样例输出
-1 1 10 10 9 8 3 1 1 8
思路:建立双向边,并找出节点的父节点,由于给出的数据过大,故需要使用vector容器处理,然后用dfs搜索每个点
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<vector>
#include<algorithm>
using namespace std;
int pre[100005];
vector <int> v[100005];
void DFS(int cur)
{
for(int i = 0; i < v[cur].size(); ++i)
{
if(pre[v[cur][i]]) continue; //若存在父节点则继续遍历
pre[v[cur][i]] = cur; //相连节点的父节点为cur
DFS(v[cur][i]); //深搜到底,把一条路上父节点全部找出
}
}
int main()
{
int ncase, num, cur, i, x, y;
scanf("%d", &ncase);
while(ncase--)
{
memset(v, 0, sizeof(v));
memset(pre, 0, sizeof(pre));
scanf("%d%d", &num, &cur);
pre[cur] = - 1; //起点没有父节点
for(i = 0; i < num - 1; ++i)
{
scanf("%d%d", &x, &y);
v[x].push_back(y); //x与y相连
v[y].push_back(x); //y与x也肯定相连
}
DFS(cur); //起点开始深搜
for(i = 1; i <= num; ++i)
printf("%d ", pre[i]); //每个节点的父节点都保存在pri数组,输出即可
}
return 0;
}