题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4411
题意:有N + 1个城市,M条无向带权边,警局在0号点,其他N个点都有犯罪团伙需要抓,最多可以派出K支队伍去抓捕,到了某个城市可以选择抓或不抓,因为在抓第i个团伙前必须先抓住i - 1团伙,对于每支队伍在完成最终抓捕后需要回到警局,问抓捕所有团伙最少要走的总距离
思路:考虑题目所给的一些限制:
1.所有点都要被遍历,且抓捕只能发生一次,那就对于点i将其拆成两个点,然后i到i'连边容量为1,费用为-INF,以保证当前点一定发生过一次抓捕
2.K支队伍不一定用完,对于0号点连边到汇点,容量为K,费用为0,将多余的流量送入汇点
3.抓捕i前要先抓i - 1,对于i'点连边到j点(j > i),容量为1, 费用为两点间最短距离
再构建源点汇点,相应连边即可
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <utility>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <climits>
#include <functional>
#include <deque>
#include <ctime>
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#pragma comment(linker, "/STACK:102400000,102400000")
using namespace std;
const int MAXN = 500;
const int MAXM = 1001000;
const int INF = 1e7;
typedef long long ll;
struct Edge
{
int to, next, cap, flow, cost;
} edge[MAXM];
int head[MAXN], tol;
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N;//节点总个数,节点编号从0~N-1
void init(int n)
{
N = n;
tol = 0;
memset(head, -1, sizeof(head));
}
void addedge(int u, int v, int cap, int cost)
{
edge[tol].to = v;
edge[tol].cap = cap;
edge[tol].cost = cost;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = 0;
edge[tol].cost = -cost;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
bool spfa(int s, int t)
{
queue<int>q;
for (int i = 0; i < N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -1;
}
dis[s] = 0;
vis[s] = true;
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (edge[i].cap > edge[i].flow &&
dis[v] > dis[u] + edge[i].cost )
{
dis[v] = dis[u] + edge[i].cost;
pre[v] = i;
if (!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if (pre[t] == -1) return false;
else return true;
}
//返回的是最大流,cost存的是最小费用
int minCostMaxflow(int s, int t, int &cost)
{
int flow = 0;
cost = 0;
while (spfa(s, t))
{
int Min = INF;
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
{
if (Min > edge[i].cap - edge[i].flow)
Min = edge[i].cap - edge[i].flow;
}
for (int i = pre[t]; i != -1; i = pre[edge[i ^ 1].to])
{
edge[i].flow += Min;
edge[i ^ 1].flow -= Min;
cost += edge[i].cost * Min;
}
flow += Min;
}
return flow;
}
int g[MAXN][MAXN];
void floyd(int n)
{
for (int k = 0; k <= n; k++)
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
g[i][j] = min(g[i][j], g[i][k] + g[k][j]);
}
int main()
{
int n, m, k;
while (~scanf("%d%d%d", &n, &m, &k) && (n + m + k))
{
int s = n * 2 + 1, t = s + 1;
init(t + 1);
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
if (i == j) g[i][j] = 0;
else
g[i][j] = INF;
for (int i = 0; i < m; i++)
{
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
g[u][v] = g[v][u] = min(g[u][v], w);
}
floyd(n);
// for (int i = 0; i < n; i++)
// { for (int j = 0; j < n; j++)
// printf("%d ", g[i][j]);
// printf("\n");
// }
addedge(s, 0, k, 0);
addedge(0, t, k, 0);
for (int i = 1; i <= n; i++)
{
addedge(0, i, 1, g[0][i]);
addedge(i, i + n, 1, -INF);
addedge(i + n, t, 1, g[i][0]);
}
for (int i = 1; i <= n; i++)
for (int j = i + 1; j <= n; j++)
addedge(i + n, j, 1, g[i][j]);
int ans;
minCostMaxflow(s, t, ans);
cout << ans + n * INF << endl;
}
return 0;
}