fft从多项式乘法到快速傅里叶变换 -二进制反转的分析

fft从多项式乘法到快速傅里叶变换原理可以看下面链接的博文,讲的很好。

http://blog.miskcoo.com/2015/04/polynomial-multiplication-and-fast-fourier-transform#comment-57922

 

其中有关为什么要二进制反转有另一种理解方法:

对于上述博文的到的公式:

 

             k<\frac{n}{2} 时:                                A({w}_{n}^{k})= \sum_{i=0}^{ \frac{n}{2}-1}{​{a}_{2i}{w}^{ki}_{\frac{n}{2}}}+{w}_{n}^{k}\sum_{i=0}^{ \frac{n}{2}-1}{​{a}_{2i+1}{w}^{ki}_{\frac{n}{2}}}

 

及                                                          

                                                                A({w}_{n}^{k+\frac{n}{2}})= \sum_{i=0}^{ \frac{n}{2}-1}{​{a}_{2i}{w}^{ki}_{\frac{n}{2}}}-{w}_{n}^{k}\sum_{i=0}^{ \frac{n}{2}-1}{​{a}_{2i+1}{w}^{ki}_{\frac{n}{2}}}

 

递归时就是不断对原数列进行划分:

 

                                                                                                 图一

例如n为16时,原数列划分:

                                                                                                  图二

现在来分析一下第四层的12,二进制表示:1100。 若0代表二叉树向左,1表示向右。则1100倒过来看就表示左左右右,不就是告诉了根节点0如何找到叶节点12在二叉树的方向吗。再根据“图一”,可以发现这个方法是可以证明的(此处不证了,意会),且对所有的叶节点都成立。

有了这个概念我们就可以找到起始数列中某个数在最底层的位置。比如原数列下标为13,二进制表示:1101  反转后:1011。右左右右((2^{3})+0+(2^{1})+(2^{0}))=11  即在最底层下标为11的位置(从0开始)。用此方法即可找到起始数列中所有数在最底层的位置。

对于反转二进制求法的方法除了上述链接的博文有讲。

也可以用动态规划来思考:若 n=2^m 则  dp[i]=(dp[i>>1]>>1)|((i&1)<<(m-1))   (有点抽象,需要画图感受一下

见          https://www.cnblogs.com/cjyyb/p/7622151.html

 

 

 

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值