卷积神经网络(三):权值初始化方法之Xavier与MSRA

基础知识

首先介绍一下Xavier等初始化方法比直接用高斯分布进行初始化W的优势所在:
一般的神经网络在前向传播时神经元输出值的方差会不断增大,而使用Xavier等方法理论上可以保证每层神经元输入输出方差一致。
这里先介绍一个方差相乘的公式,以便理解Xavier:

这里写图片描述

Xavier

现在我们先来分析一层卷积:
这里写图片描述
其中ni表示输入个数。

根据概率统计知识我们有下面的方差公式:
这里写图片描述

特别的,当我们假设输入和权重都是0均值时(目前有了BN之后,这一点也较容易满足),上式可以简化为:
这里写图片描述

进一步假设输入x和权重w独立同分布,则有:
这里写图片描述

于是,为了保证输入与输出方差一致,则应该有:
这里写图片描述

为什么要保证输入和输出的方差一致:如果不一致,则会造成方差越来越大(vary(y)>var(x)),或是越来越小(var(y)

为了保证前向传播和反向传播时每一层的方差一致,应

这里写图片描述

但是,实际当中输入与输出的个数往往不相等,于是为了均衡考量,最终我们的权重方差应满足

———————————————————————————————————————
这里写图片描述
———————————————————————————————————————

学过概率统计的都知道 [a,b] 间的均匀分布的方差为:
这里写图片描述

因此,Xavier初始化的实现就是下面的均匀分布

——————————————————————————————————————————
这里写图片描述

MSRA

方法来自于何凯明paper 《Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification》
主要想要解决的问题是由于经过relu后,方差会发生变化,因此我们初始化权值的方法也应该变化

只考虑输入个数时,MSRA初始化是一个均值为0方差为2/n的高斯分布:
MSRA初始化方法
推导证明

推导过程与Xavier类似。

首先,用下式表示第L层卷积:
卷积表示
则其方差为:(假设x和w独立,且各自的每一个元素都同分布,即下式中的n_l表示输入元素个数,x_l和w_l都表示单个元素)
方差
当权重W满足0均值时,上述方差可以进一步写为:
方差整理——————————————————(1)
对于ReLU激活函数,我们有:(其中f是激活函数)
ReLU激活方差—————————————————————(2)
带入之前的方差公式则有:
最终方差
由上式易知,为了使每一层数据的方差保持一致,则权重应满足:
结论
的不同,就是它是只考虑前向传播或者只考虑反向传播的,然后使用高斯分布,而没有综合考虑

补充说明

(1) 对于第一层数据,由于其之前没有经过ReLU,因此理论上这一层的初始化方差应为1/n。但是,因为只有一层,系数差一点影响不大,因此为了简化操作整体都采用2/n的方差;

(2) 反向传播需要考虑的情况完全类似于“Xavier”。对于反向传播,可以同样进行上面的推导,最后的结论依然是方差应为2/n,只不过因为是反向,这里的n不再是输入个数,而是输出个数。文章中说,这两种方法都可以帮助模型收敛。

Xavier与MSRA比较

目前在各种深度学习领域的论文中,使用Xavier初始化方法的比MSRA要多。
虽然MSRA试图去适应relu这一出发点感觉更好,但是博主个人认为其推导过程是存在弊端的:

一、公式一计算 var(x)=E(x2)E(x)2 v a r ( x ) = E ( x 2 ) − E ( x ) 2 时默认把第二项视为零,但是从公式二中我们知道x是前一层输出经过激活函数得到的值,而relu将x中原本的负项都置零了,因此实际上并不能认为公式一成立。

二、MSRA方法只考虑一个方向,无法使得正向反向传播时方差变化都很小。

可能是因为以上原因,通常深度学习实践中都是使用Xavier。

以上介绍MSRA部分转载自 blog.csdn.net/shuzfan/article/details/51347572

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值