SparkStreaming的编程模型及原理的认识

SparkStreaming的编程模型及原理的认识

数据结构

DStream :SparkStreaming中使用的数据结构,代表一个连续的数据流,是由一系列带有时间维度的RDD组成
在这里插入图片描述

RDD:只读、有分区的数据集,利用有向无环图(DAG)记录数据结构之间的变化,属性如下:

属性含义使用场景
分区列表— partitios每个分区存储RDD的一部分数据
分区位置列表—preferredLocations记录每个分区数据存储在哪台机器节点上重写方法getPreferredLocations,实现让分区尽可能和数据在相同的机器上
依赖列表—dependencies记录RDD的依赖关系
分区器—partitioner记录RDD的依赖关系重写方法getPartitions,按自定义方式分区,目前支持Hash和Range分区
计算函数—compute利用父分区计算RDD分区的值

yarn-cluster提交任务流程

在这里插入图片描述
流程描述:
1.SparkStreaming任务提交后,Client向HDFS上传SparkStreaming的Jar包和配置,之后向Yarn ResourceManager提交任务
2. ResourceManager通知对应的NodeManager启动ApplicationMaster,ApplicationMaster启动后加载SparkStreaming的Jar包和配置构建环境,启动Driver(包含SparkStreamingContext和SparkContext)
3. ApplicationMaster向ResourceManager申请资源启动Executor,ResourceManager分配Executor资源后,由ApplicationMaster通知资源所在节点的NodeManager启动Executor
4. Executor启动后向Driver发送心跳包,并等待Driver向其分配任务

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值