hdu 4899 Hero meet devil 2014多校联合训练赛 状态压缩dp 最长公共子序列


Hero meet devil

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 131    Accepted Submission(s): 57


Problem Description
There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.

After the ring has been destroyed, the devil doesn't feel angry, and she is attracted by z*p's wisdom and handsomeness. So she wants to find z*p out.

But what she only knows is one part of z*p's DNA sequence S leaving on the broken ring.

Let us denote one man's DNA sequence as a string consist of letters from ACGT. The similarity of two string S and T is the maximum common subsequence of them, denote by LCS(S,T).

After some days, the devil finds that. The kingdom's people's DNA sequence is pairwise different, and each is of length m. And there are 4^m people in the kingdom.

Then the devil wants to know, for each 0 <= i <= |S|, how many people in this kingdom having DNA sequence T such that LCS(S,T) = i.

You only to tell her the result modulo 10^9+7.
 

Input
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains a string S. the second line contains an integer m.

T<=5
|S|<=15. m<= 1000.
 

Output
For each case, output the results for i=0,1,...,|S|, each on a single line.
 

Sample Input
  
  
1 GTC 10
 

Sample Output
  
  
1 22783 528340 497452
 

Author
WJMZBMR
 

Source

题意:给一个字符串s长度小于15,求长度为n的所有字符串(AGTC组成)与s公共子序列长度为0,1,2..s.lengt()的个数,

clj的题解没看懂,jl讲了一遍没太懂,然后问了cs,回去想了下还是没想明白,再问了 一次才搞懂。。。

解题思想:

dp[i][j] 表示s前j个字符与一个串(假设为t)前i个字符得到的最长公共子序列。

根据转移公式  dp[i][j] = max(dp[i-1][j],dp[i-1][j-1]+1)  根据转移公式,其实只要知道dp[i-1]的信息就可以了,小于i-1的信息不需要了

不妨去掉i这个维度,dp[j]表示与当前长度与s得到的最长公共子序列

那么dp[j]是一个不降的序列-------显然,因为如果求的串是s0->sj与t的公共子序列,s0->sj肯定与t所求结果要大于等于s0->sj-1

接下来构造转移方程:以dp作为一个状态,x=(dp[0],dp[1],....,dp[|s|])构成一个新的状态记为res[x]

举个例子: x表示状态,就是dp[j]的值,表示为用前j个字符求得最大公共子序列数A,G,T,C表示添加一个字符,这些字符的下方为添加该字符以后得到的新状态

GTC     表示s串

   x          A              G            T            C              

000     000          111         011          001

001     001          111         011          001

011     011          111         011           012

111     111           111         122          112

112     112           112        122          122

122    122            122      122            123

123    123          123        123            123

有点多,总共的状态为2^|s| 转移数为4

当x等于122时说明当前匹配的结果为GT,添加一个C的话就可以匹配成功GTC了,添加其他字符没啥影响的,不增加dp[j]的值

现在用这些状态,进行压缩处理

x=(dp[0],dp[1],....,dp[|s|])

如果dp[i] == dp[i-1] +1那么i位置置1否则为0

那么x就可以变成一个二进制表示的状态了,然后1的个数就表示为可以匹配到的最长的公共子序列的值,将最后的结果,包含1

的个数相同的状态合并,然后就是最后的结果了

转移方程和上面举例的表格一致。


当然,其实很明显,并不是所有的状态都是可达的,

如果直接2*|S|*n*4的话挺费时间的,虽然不超时,但是优化一下会更好些

把有效状态提出来,每次只对有效的状态进行转移可以快3倍吧。。一下贴两种方式的代码


不优化 5.5s左右

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 1<<16
#define ll long long
#define mod 1000000007
ll dp[2][maxn];
int con[maxn][5];
int ID[200];

int value[20];
char word[20];

void Dostate(int len){
    static int res[30];
    memset(res,0,sizeof(res));
    memset(con,0,sizeof(con));
    int n = 1<<len;
    int i,j,k,s;
    for( i = 0;i < n; i++){
        for(j = 0;j < 4;j++){
            for( k = 0;k < len; k++){
                if((1<<k)&i)res[k+1]=1;
                else res[k+1] = 0;
            }
            for(k=1;k<=len;k++)res[k]+=res[k-1];

            for(k=len;k>0;k--){
                if(value[k] == j) res [k] = max(res[k],res[k-1]+1);
            }
            for(k=1;k<=len;k++)res[k] = max(res[k],res[k-1]);
            for(k=1,s=0;k<=len;k++)
                if(res[k]>res[k-1])s |= (1<<k-1);
            con[i][j] = s;
        }
    }
}
void add(ll &a,ll b){
    a+=b;
    if(a >= mod) a-=mod;
}
int count(int i){
    int ans = 0;
    while(i){
        if(i&1)ans++;
        i/=2;
    }
    return ans;
}
void work(int n,int len,int s){
    int p=0,q=1;
    memset(dp[0],0,sizeof(dp[0]));
    dp[0][0] = 1;
    int i,j,k;
    for( i = 0;i < n; i++){
        memset(dp[q],0,sizeof(dp[q]));
        for( j = 0;j < s; j++){
            for(k=0;k<4;k++){
                add(dp[q][con[j][k]],dp[p][j]);
            }
        }
        swap(p,q);
    }
    static ll ans[30];
    memset(ans,0,sizeof(ans));
    for( i = 0;i < s; i++){
        add(ans[count(i)],dp[p][i]);
    }
    for(i=0;i<= len;i++)
        cout<<ans[i]<<endl;
}
int main(){
    ID['A'] = 0,ID['G'] = 1;
    ID['T'] = 2,ID['C'] = 3;
    int t,n;
    scanf("%d",&t);
    while(t--){
         scanf("%s",word);
         scanf("%d",&n);
         int len = strlen(word);
         for(int i = 0;i < len; i++)
            value[i+1] = ID[word[i]];
         Dostate(len);
         work(n,len,1<<len);
    }
    return 0;
}



优化后 1.7

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 1<<15
#define ll int
#define mod 1000000007
ll dp[2][maxn];
int con[maxn][5];
int ID[200];
int value[20];
char word[20];
int queue[maxn];
int check[maxn];
int Map(int s){
    memset(check,-1,sizeof(check));
    int front = 1,rear=0;
    queue[0] = 0;
    check[0] = 0;
    int u,i,v;
    while(front!=rear){
        u = queue[rear++];
        for(i=0;i<4;i++){
            v = con[u][i];
            if(check[v] != -1) continue;
            check[v] = front;
            queue[front++] = v;
        }
    }
    return front;
}
void Dostate(int len){
    static int res[30];
    memset(res,0,sizeof(res));
    memset(con,0,sizeof(con));
    int n = 1<<len;
    int i,j,k,s;
    for( i = 0;i < n; i++){
        for(j = 0;j < 4;j++){
            for( k = 0;k < len; k++){
                if((1<<k)&i)res[k+1]=1;
                else res[k+1] = 0;
            }
            for(k=1;k<=len;k++)res[k]+=res[k-1];

            for(k=len;k>0;k--){
                if(value[k] == j) res [k] = max(res[k],res[k-1]+1);
            }
            for(k=1;k<=len;k++)res[k] = max(res[k],res[k-1]);
            for(k=1,s=0;k<=len;k++)
                if(res[k]>res[k-1])s |= (1<<k-1);
            con[i][j] = s;
        }
    }
}
void add(ll &a,ll b){
    a+=b;
    if(a >= mod) a-=mod;
}
int count(int i){
    int ans = 0;
    while(i){
        if(i&1)ans++;
        i/=2;
    }
    return ans;
}
void work(int n,int len,int s){
    int p=0,q=1;
    memset(dp[0],0,sizeof(dp[0]));
    dp[0][0] = 1;
    int i,j,k,u,v;
    s = Map(s);
    for( i = 0;i < n; i++){
        //memset(dp[q],0,sizeof(dp[q]));
        for(j=0;j<s;j++)dp[q][j]=0;
        for( j = 0;j < s; j++){
            u=queue[j];
            for(k=0;k<4;k++){
                v=check[con[u][k]];
                add(dp[q][v],dp[p][j]);
            }
        }
        swap(p,q);
    }
    static ll ans[30];
    memset(ans,0,sizeof(ans));
    for( i = 0;i < s; i++){
        add(ans[count(queue[i])],dp[p][i]);
    }
    for(i=0;i<= len;i++)
        cout<<ans[i]<<endl;
}
int main(){
    ID['A'] = 0,ID['G'] = 1;
    ID['T'] = 2,ID['C'] = 3;
    int t,n;
    scanf("%d",&t);
    while(t--){
         scanf("%s",word);
         scanf("%d",&n);
         int len = strlen(word);
         for(int i = 0;i < len; i++)
            value[i+1] = ID[word[i]];
         Dostate(len);
         work(n,len,1<<len);
    }
    return 0;
}


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GDRetop

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值