OpenCV
时行居正
拙则勤,行则易
展开
-
OpenCV之imread解析
近日,开始学习图像处理,思前想后决定以opencv作为实验基础。遂完成图片读取和显示功能。Imread作为常用的图像读取函数,虽然简单,但是参数的选择非常重要,直接影响到后期处理。同时在调试学习过程中也可以学习到图像处理的知识。0 函数原型 Mat imread(const String& filename,int flags = IMREAD_COLOR);原创 2017-04-28 07:43:41 · 78384 阅读 · 0 评论 -
图像阈值
0 引图像阈值,即图像的分割基准,基于此可完成图像的二值化。图像二值化可用于OCR成图像的分割(也是最为简单的一种)。这种分割是基于图像像素值级别的差异,且一般的对象是灰度图像。1 图像二值化如上所述,图像阈值的进一步处理就是二值化,二值化包含但不限于“大于阈值为255,小于阈值为0”的处理模式。具体如下所示。其实个人理解这些方法只是提供了一种在处理图像时的思路,并不一定要死记住方法的原创 2017-09-24 16:52:38 · 13236 阅读 · 0 评论 -
OpenCV Mat常用操作
#include #include //opencv 常用矩阵操作int main(int argc, char* argv[]){ //----------------------------------------- //0. MAT 定义 //----------------------------------------- //初始化时指定尺寸和数据类型原创 2017-06-18 15:49:24 · 905 阅读 · 0 评论