OpenCV之imread解析

    近日,开始学习图像处理,思前想后决定以opencv作为实验基础。遂完成图片读取和显示功能。Imread作为常用的图像读取函数,虽然简单,但是参数的选择非常重要,直接影响到后期处理。同时在调试学习过程中也可以学习到图像处理的知识。

0 函数原型

    Mat imread(const String& filename,int flags = IMREAD_COLOR);

    返回Mat对象;

    参数filename: 待打开图片的绝对地址,需要注意的是,并不是所有文件都可以用它打开,它支持的文件如下;函数识别不是依靠文件的后缀名,而是依靠内容的编码格式;

需要注意的是imread读取数据时会重新排列数据。

  • Windows bitmaps - *.bmp, *.dib (always supported)
  • JPEG files - *.jpeg, *.jpg, *.jpe (see the Notes section)
  • JPEG 2000 files - *.jp2 (see the Notes section)
  • Portable Network Graphics - *.png (see the Notes section)
  • WebP - *.webp (see the Notes section)
  • Portable image format - *.pbm, *.pgm, *.ppm *.pxm, *.pnm (always supported)
  • Sun rasters - *.sr, *.ras (always supported)
  • TIFF files - *.tiff, *.tif (see the Notes section)
  • OpenEXR Image files - *.exr (see the Notes section)
  • Radiance HDR - *.hdr, *.pic (always supported)
  • Raster and Vector geospatial data supported by Gdal (see the Notes section)

    参数flags:打开的参数,这个非常重要,因为如果设置不合适的话,很容易出现预想之外的效果。它可以指导将原图读取时进行一定的转换。默认值是IMREAD_LOAD_GDAL。因此,如果是想直接处理原图,应该设置为IMREAD_UNCHANED。

IMREAD_UNCHANGED 

If set, return the loaded image as is (with alpha channel, otherwise it gets cropped).

IMREAD_GRAYSCALE 

If set, always convert image to the single channel grayscale image.

IMREAD_COLOR 

If set, always convert image to the 3 channel BGR color image.

IMREAD_ANYDEPTH 

If set, return 16-bit/32-bit image when the input has the corresponding depth, otherwise convert it to 8-bit.

IMREAD_ANYCOLOR 

If set, the image is read in any possible color format.

IMREAD_LOAD_GDAL 

If set, use the gdal driver for loading the image.

IMREAD_REDUCED_GRAYSCALE_2 

If set, always convert image to the single channel grayscale image and the image size reduced 1/2.

IMREAD_REDUCED_COLOR_2 

If set, always convert image to the 3 channel BGR color image and the image size reduced 1/2.

IMREAD_REDUCED_GRAYSCALE_4 

If set, always convert image to the single channel grayscale image and the image size reduced 1/4.

IMREAD_REDUCED_COLOR_4 

If set, always convert image to the 3 channel BGR color image and the image size reduced 1/4.

IMREAD_REDUCED_GRAYSCALE_8 

If set, always convert image to the single channel grayscale image and the image size reduced 1/8.

IMREAD_REDUCED_COLOR_8 

If set, always convert image to the 3 channel BGR color image and the image size reduced 1/8.

1 通道编码顺序

    通道,与像素深度深度有关。灰度图通常是8比特的像素深度,则通道数为1。如果是彩色图,且为RGB编码,那么一般为24比特的像素深度,通道数为3。而有的彩色图的像素深度是16或者32比特。16比特可能有多种情况:一是压缩的RGB格式,二是YUV的输出。无论何种,都是只有2通道,需要手动解析分离。32比特(windows *.bmp)的像素深度对应的彩色图,则表示的是4通道,RGBA,多出的A表示的是透明度的索引。

    另外读取时需要注意内部像素的编码顺序,这也依赖于imread的flags选项的取值,如果取值决定转成RGB,那么正常的顺序是BGR,排列顺序如下图所示。如果最后imread输出是四通道,多了Alpha通道,那么顺序是RGBA。

    

2 图像像素通道数据访问

    这部分可以借鉴网上资料,可以分为三种类型。

2.1 动态访问at<typename>(i,j)

    Imread返回的mat类,提供了at模板函数。Image.at<uchar>(i, j);取出i行j列的数据,uchar可以理解为imread返回之后图像的编码类型(如1所述的通道)。如果是三通道,则可以是Vec3b,四通道则是Vec4b。

//CV_LOAD_IMAGE_UNCHANGED如果要取A分量那么flag最好设置成这个值

Mat image = imread("1_firstlai.png", CV_LOAD_IMAGE_UNCHANGED);

for(int i=0;i<image.rows;i++)

{

    for(int j=0;j<image.cols;j++)

    {

        image.at<Vec3b>(i,j)[0]; //B

        image.at<Vec3b>(i,j)[1]; //G

        image.at<Vec3b>(i,j)[2]; //R

       

        image.at<Vec4b>(i,j)[0]; //B

        image.at<Vec4b>(i,j)[1]; //G

        image.at<Vec4b>(i,j)[2]; //R

        image.at<Vec4b>(i,j)[3]; //A

    }

}

 

2.2 指针-更加高效

    imgage.ptr<uchar>(i)。

int nr=image.rows;

// 3通道转换为1通道

int nl=image.cols*image.channels();

for(int k=0;k<nr;k++)

{

    // 每一行图像的指针

    const uchar* inData=image.ptr<uchar>(k);

    for(int i=0;i<nl;i++)

    {

        inData[i];

    }

}

    本质就是将每行的3/4通道数据转换为1通道数据访问,因为OpenCV内部存储每一行像素数据以及像素内部通道数据都是连续存储的。但是行与行的数据并不一定是连续存储的,所以不能应用在行与行之间。

2.3 结合isContinuous的指针

    2.2中已经说明了,OpenCV中行与行之间不一定连续存储,也就是有可能连续存储,而且提供了对应的API支持判断是否连续这一现象,也可基于此,再提高访问速度。

int nr=image.rows;

int nc=image.cols*image.channels();

if(image.isContinuous()){

    nc=nc*nr;

    nr=1;

}

for(int i=0;i<nr;i++){

    // 每一行图像的指针

    const uchar* inData=image.ptr<uchar>(i);

    for(int j=0;j<nc;j++){

        inData[j];

    }

}

2.4 安全但低效的迭代器

    2.1-2.3的方法虽然效率高,但是如果操作不小心,容易造成数组越界的Bug。所以opencv提供了一种更安全的访问方法-迭代器。

MatIterator_<Vec3b> it_im, itEnd_im;

it_im    = im.begin<Vec3b>(); 

itEnd_im = im.end<Vec3b>(); 

for (; it_im != itEnd_im; it_im++, it_om++){  

    (*it_im)[0] ; //B

    (*it_im)[1] ; //G

    (*it_im)[2] ; //R 

} 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值