------基于Redis集群集群解决单机Redis存在的问题
单机Redis存在的四大问题,如图:
1.Redis持久化(数据丢失问题解决)
Redis的两种持久化方案
- RDB持久化
- AOF持久化
1.1RDB持久化
RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。快照文件称为RDB文件,默认是保存在当前运行目录。
1.1.1执行时机
RDB持久化会在一下四种情况下执行:
- 执行save命令 :主进程执行
- 执行bgsave命令 :后台执行
- Redis停机时
- 触发RDB条件时执行 :
- # 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
save 900 1
save 300 10
save 60 10000 -
# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes# RDB文件名称
dbfilename dump.rdb# 文件保存的路径目录
dir ./
- # 900秒内,如果至少有1个key被修改,则执行bgsave , 如果是save "" 则表示禁用RDB
1.1.2RDB原理
bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。
fork采用的是copy-on-write技术:
- 当主进程执行读操作时,访问共享内存;
- 当主进程执行写操作时,则会拷贝一份数据,执行写操作。
总结:
- RDB中bgsave的基本流程?
- fork主进程得到一个子进程,共享内存空间
- 子进程读取内存数据并写入新的RDB文件
- 用新的RDB文件去替换旧的RDB文件。
- RDB会在什么时候执行?save 60 1000代表什么含义?
- RDB默认实在服务停止时执行;
- 代表在60秒内至少执行1000次修改才出发RDB
- RDB的缺点?
- RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险;
- fork子进程,压缩,写入RDB文件耗时较长
1.2AOF持久化
AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件。
AOF配置:
修改redis.conf中的配置
# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"
AOF的命令记录的频率也可以通过redis.conf文件来配:
# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no
AOF文件重写:
AOF比RDB文件要大得多,因为AOF会记录每一条执行的操作,尽管记录很多天操作数据,但是最后一次写操作才有意义,所有通过bgrewriteaof指令,可以让AOF文件执行重写功能,用最少的命令达到相同的效果
如图,AOF原本有三个命令,但是set num 123 和 set num 666
都是对num的操作,第二次会覆盖第一次的值,因此第一个命令记录下来没有意义。
所以重写命令后,AOF文件内容就是:mset name jack num 666
Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:
# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写
auto-aof-rewrite-min-size 64mb
RDB和AOF对比
RDB | AOF | |
持久化方式 | 定时对整个内存做快照 | 记录每一次执行的命令 |
数据完整性 | 不完整,两次备份之间会丢失 | 相对完整,取决于刷盘策略 |
文件大小 | 会有压缩,文件体积小 | 记录命令,文件体积很大 |
宕机恢复速度 | 快 | 慢 |
数据恢复优先级 | 低,因为数据完整性不如AOF | 高,因为数据完整性更高 |
系统资源占用 | 高,大量CPU和内存消耗 | 低主要是磁盘IO的资源,但AOF重写时会占用大量CPU和资源 |
使用场景 | 可以容忍分钟的数据丢失,拥有更快的启动速度 | 对数据安全性要求较高常见 |
2.Redis主从(并发能力问题解决)
单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。如图:
2.1主从数据同步原理:
2.1.1全量同步
全量同步就是在第一次建立连接时,会进行全量同步,将master节点的全部数据都拷贝到slave节点。如图:
如何知道salve是第一次连接的呢?
两个方面:
- Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid。
- offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新。
因此slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据。
由于slave本身也是一个master,所以也有自己的replid和offset,当第一次发送请求时,会携带自己的replid和offset,但是与master的不一致,master就会认为这是一个全新的slave,就会执行全量同步,让slave和master的数据保持一致。
master判断一个节点是否是第一次同步的依据,就是看replid是否一致。如图:
完整流程如下:
- slave节点请求增量同步
- master节点判断replid不一致,拒绝增量同步,
- mater将自己完整的数据生成RDB,发送个slave
- slave接收到master发送的RDB文件,就会清空本地数据,加载RDB文件
- master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
- slave执行接收到的命令,保持与master之间的同步
2.1.2增量同步
全量同步需要先做RDB,然后将RDB文件通过网络传输个slave,成本太高了。因此除了第一次做全量同步,其它大多数时候slave与master都是做增量同步
增量同步:只更新slave和master存在差异的那部分数据。如图:
master怎么知道slave与自己的数据差异在哪里呢?
这里就要说到全量同步时的repl_baklog文件
2.2repl_backlog原理
repl_backlog是一个固定大小的数组,只不过,这个数祖是环形的,也就是说角标到达数组末尾,要重新从0开始读写,这样,数组头部的数据就会被覆盖。
repl_baklog中会记录Redis处理过的命令日志及offset,包括master当前的offset,和slave已经拷贝到的offset:
slave与master的offset之间的差异,就是salve需要增量拷贝的数据了
随着不断有数据写入,master的offset逐渐变大,slave也不断的拷贝,追赶master的offset:
直到数组被填满:
此时,如果有新的数据写入,就会覆盖数组中的旧数据。不过,旧的数据只要是绿色的,说明是已经被同步到slave的数据,即便被覆盖了也没什么影响。因为未同步的仅仅是红色部分。
但是,如果slave出现网络阻塞,导致master的offset远远超过了slave的offset :
如果master继续写入新数据,其offset就会覆盖旧的数据,直到将slave现在的offset也覆盖:
棕色框中的红色部分,就是尚未同步,但是却已经被覆盖的数据。此时如果slave恢复,需要同步,却发现自己的offset都没有了,无法完成增量同步了。只能做全量同步。
注意: repl_baklog文件大小有限,写满后会覆盖最早的数据,如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步。
2.3主从同步优化
主从同步可以保证主从数据的一致性,非常重要。
可以从以下几个方面来优化Redis主从就集群:
- 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
- Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
- 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
- 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力
主从从架构图:
总结:
全量同步和增量同步的区别:
- 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave。
- 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave
什么时候执行全量同步?
- slave第一次连接到mater节点
- slave断开连接时间太久,导致尚未备份的数据被覆盖
什么时候执行增量同步?
slave节点断开又恢复,并且在repl_baklog中能找到offset时
搭建主从集群:
1.创建三个文件夹,名字分别叫7001、7002、7003:
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir 7001 7002 7003
如图:
2. 修改原始配置:
修改redis-6.2.4/redis.conf文件,将其中的持久化模式改为默认的RDB模式,AOF保持关闭状态。
# 开启RDB
# save ""
save 3600 1
save 300 100
save 60 10000
# 关闭AOF
appendonly no
3.拷贝配置文件到每个实例目录
然后将redis-6.2.4/redis.conf文件拷贝到三个目录中(在/tmp目录执行下列命令):
# 方式一:逐个拷贝
cp redis-6.2.4/redis.conf 7001
cp redis-6.2.4/redis.conf 7002
cp redis-6.2.4/redis.conf 7003
# 方式二:管道组合命令,一键拷贝
echo 7001 7002 7003 | xargs -t -n 1 cp redis-6.2.4/redis.conf
如图:
4.修改每个实例的端口、工作目录
修改每个文件夹内的配置文件,将端口分别修改为7001、7002、7003,将rdb文件保存位置都修改为自己所在目录(在/tmp目录执行下列命令):
sed -i -e 's/6379/7001/g' -e 's/dir .\//dir \/tmp\/7001\//g' 7001/redis.conf
sed -i -e 's/6379/7002/g' -e 's/dir .\//dir \/tmp\/7002\//g' 7002/redis.conf
sed -i -e 's/6379/7003/g' -e 's/dir .\//dir \/tmp\/7003\//g' 7003/redis.conf
如图:
5)修改每个实例的声明IP
虚拟机本身有多个IP,为了避免将来混乱,我们需要在redis.conf文件中指定每一个实例的绑定ip信息,格式如下:
# redis实例的声明 IP
replica-announce-ip 192.168.150.101(根据实际情况而定)
每个目录都要改,我们一键完成修改(在/tmp目录执行下列命令):
# 逐一执行
sed -i '1a replica-announce-ip 192.168.150.101' 7001/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7002/redis.conf
sed -i '1a replica-announce-ip 192.168.150.101' 7003/redis.conf
# 或者一键修改
printf '%s\n' 7001 7002 7003 | xargs -I{} -t sed -i '1a replica-announce-ip 192.168.150.101' {}/redis.conf
如图:
启动:
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-server 7001/redis.conf
# 第2个
redis-server 7002/redis.conf
# 第3个
redis-server 7003/redis.conf
启动后:
如果要一键停止可以运行以下命令:
printf '%s\n' 7001 7002 7003 | xargs -I{} -t redis-cli -p {} shutdown
开启主从关系:
现在三个实例还没有任何关系,要配置主从可以使用replicaof 或者slaveof(5.0以前)命令。
有临时和永久两种模式:
-
修改配置文件(永久生效)
-
在redis.conf中添加一行配置:
slaveof <masterip> <masterport>
-
-
使用redis-cli客户端连接到redis服务,执行slaveof命令(重启后失效):
slaveof <masterip> <masterport>
这里我们为了演示方便,使用方式二。
通过redis-cli命令连接7002,执行下面命令:
# 连接 7002
redis-cli -p 7002
# 执行slaveof
slaveof 192.168.150.101 7001
通过redis-cli命令连接7003,执行下面命令:
# 连接 7003
redis-cli -p 7003
# 执行slaveof
slaveof 192.168.150.101 7001
然后连接 7001节点,查看集群状态:
# 连接 7001
redis-cli -p 7001
# 查看状态
info replication
结果:
测试:
执行下列操作以测试:
-
利用redis-cli连接7001,执行
set num 123
-
利用redis-cli连接7002,执行
get num
,再执行set num 666
-
利用redis-cli连接7003,执行
get num
,再执行set num 888
可以发现,只有在7001这个master节点上可以执行写操作,7002和7003这两个slave节点只能执行读操作。
到此,主从机搭建完成
3.Redis哨兵
结构图:
哨兵的作用:
- 监控:Sentinel会不断检查你的slave和master是否 按预期工作
- 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
- 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端
集群监控原理:
Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:
主关下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线
客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半。
集群故障恢复原理:
发现master发生故障,Sentinel会从slave中选择一个,称为新的master,具体的选择依据如下:
- 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点。
- 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
- 如果slave-prority一样,则判断slave节点的offset(偏移量)值,越大说明数据越新,优先级越高
- 最后是判断slave节点的运行id大小,越小优先级越高。
选出新的master之后,如何进行切换:
- sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
- sentinel给所有其它slave发送slaveof 192.168.29.129 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
- 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点
总结:
- 哨兵的三个作用?
- 监控
- 自动故障修复
- 通知
- Sentinel如何判断一个redis实例是否健康?
- 每隔1秒发送一个ping命令,超出一段时间没有响应,则认为是主观下线
- 如果超过一般的Sentinel都认为是主观下线,那么则是客观下线
- 故障转移步骤有哪些
- 从slave中选取一个新的master
- 向选取的slaver发送slaveof no one命令,让该节点成为master,
- 让所有节点执行slaveof执行,让这些slave称为新mater的节点
- 修改故障节点配置,待故障修复后会成为新master的slave。
哨兵集群搭建:
这里我们搭建一个三节点形成的Sentinel集群,来监管之前的Redis主从集群。
准备实例和配置:
要在同一台虚拟机开启3个实例,必须准备三份不同的配置文件和目录,配置文件所在目录也就是工作目录。
我们创建三个文件夹,名字分别叫s1、s2、s3:
# 进入/tmp目录
cd /tmp
# 创建目录
mkdir s1 s2 s3
如图:
然后我们在s1目录创建一个sentinel.conf文件,添加下面的内容:
port 27001
sentinel announce-ip 192.168.150.101
sentinel monitor mymaster 192.168.150.101 7001 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
dir "/tmp/s1"
如图:
启动:
为了方便查看日志,我们打开3个ssh窗口,分别启动3个redis实例,启动命令:
# 第1个
redis-sentinel s1/sentinel.conf
# 第2个
redis-sentinel s2/sentinel.conf
# 第3个
redis-sentinel s3/sentinel.conf
测试:
4.Redis分片集群
主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:
- 海量数据存储问题
- 高并发写问题
使用分片集群可以解决以上问题,如图:
分片集群特征:
-
集群中有多个master,每个master保存不同数据
-
每个master都可以有多个slave节点
-
master之间通过ping监测彼此健康状态
-
客户端请求可以访问集群任意节点,最终都会被转发到正确节点
4.1散列插槽:
Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:
数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
-
key中包含"{}",且“{}”中至少包含1个字符,“{}”中的部分是有效部分
-
key中不包含“{}”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是{itcast}num,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。
小结:
Redis如何判断某个key应该在哪个实例?
-
将16384个插槽分配到不同的实例
-
根据key的有效部分计算哈希值,对16384取余
-
余数作为插槽,寻找插槽所在实例即可
如何将同一类数据固定的保存在同一个Redis实例?
-
这一类数据使用相同的有效部分,例如key都以{typeId}为前缀
4.2集群伸缩:
redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:
比如,添加节点的命令 :
需求:向集群中添加一个新的master节点,并向其中存储 num = 10
-
启动一个新的redis实例,端口为7004
-
添加7004到之前的集群,并作为一个master节点
-
给7004节点分配插槽,使得num这个key可以存储到7004实例
这里需要两个新的功能:
-
添加一个节点到集群中
-
将部分插槽分配到新插槽
创建新的redis实例:
- 创建一个文件夹:mkdir 7004
- 拷贝配置文件:cp redis.conf /7004
- 修改配置文件:sed /s/6379/7004/g 7004/redis.conf
- 启动:redis-server 7004/redis.conf
添加新节点到redis
添加节点的语法如下:
执行命令:
redis-cli --cluster add-node 192.168.29.129:7004 192.168.29.129:7001
通过命令查看集群状态:
redis-cli -p 7001 cluster nodes
如图,7004加入了集群,并且默认是一个master节点:
但是,可以看到7004节点的插槽数量为0,因此没有任何数据可以存储到7004上
转移插槽:
我们要将num存储到7004节点,因此需要先看看num的插槽是多少:
如上图所示,num的插槽为2765.
我们可以将0~3000的插槽从7001转移到7004,命令格式如下:
具体命令如下:
建立连接:
得到下面的反馈:
询问要移动多少个插槽,我们计划是3000个:
新的问题来了:
那个node来接收这些插槽??
显然是7004,那么7004节点的id是多少呢?
复制这个id,然后拷贝到刚才的控制台后:
这里询问,你的插槽是从哪里移动过来的?
-
all:代表全部,也就是三个节点各转移一部分
-
具体的id:目标节点的id
-
done:没有了
这里我们要从7001获取,因此填写7001的id:
填完后,点击done,这样插槽转移就准备好了:
确认要转移吗?输入yes:
然后,通过命令查看结果:
可以看到 :
目的达成
4.3故障转移:
4.3.1自动故障转移
当集群中有一个master宕机会发生什么呢?
直接停止一个redis实例,例如7002:
redis-cli -p 7002 shutdown
4.3.2手动故障转移
利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:
这种failover命令可以指定三种模式:
-
缺省:默认的流程,如图1~6歩
-
force:省略了对offset的一致性校验
-
takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见
案例需求:在7002这个slave节点执行手动故障转移,重新夺回master地位
步骤如下:
1)利用redis-cli连接7002这个节点
2)执行cluster failover命令
如图:
效果: