fish
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
20、分布式机器学习工作流的实现与优化
本文详细介绍了如何在分布式机器学习领域实现一个高效且稳定的端到端工作流,并通过缓存机制优化执行效率。内容涵盖数据摄取、模型训练、模型服务的实现,以及利用 Argo Workflows 的步骤记忆化功能跳过冗余操作。同时,探讨了分布式机器学习系统中的批处理模式、缓存模式、分片模式、调度策略、资源管理、容错机制和模型服务相关技术。通过这些方法,可以提升系统的可靠性、性能和效率,满足实际应用需求。原创 2025-08-07 12:15:24 · 56 阅读 · 0 评论 -
19、端到端机器学习模型服务与工作流实现
本文详细介绍了如何实现端到端的机器学习模型服务与工作流。首先,讲解了单服务器模型推理的实现,包括加载模型、数据预处理、模型预测以及使用 TensorFlow Serving 和 KServe 部署模型服务。随后,通过复制模型服务器和使用 KServe 的自动扩展功能,提高服务的可扩展性和性能。最后,使用 Argo Workflows 构建了一个完整的端到端工作流,涵盖数据摄取、分布式训练、模型选择和模型服务,实现了高效的机器学习系统架构。原创 2025-08-06 10:35:46 · 78 阅读 · 0 评论 -
18、深度学习模型训练:从单机到分布式及模型选择
本文详细介绍了深度学习模型从单机训练到分布式训练的完整流程,涵盖了数据管道配置、模型定义、训练策略选择、模型保存与评估等内容。通过使用TensorFlow的分布式训练策略,如MultiWorkerMirroredStrategy,并结合容器化部署和Kubernetes持久卷技术,实现了高效、稳定的模型训练与管理。同时,通过模型评估与选择机制,确保最终选择出性能最优的模型用于服务部署。原创 2025-08-05 14:24:09 · 131 阅读 · 0 评论 -
17、机器学习系统相关技术与完整实现
本文详细介绍了构建机器学习系统的相关技术,包括TensorFlow、Kubernetes、Kubeflow和Argo Workflows的使用方法。文章涵盖数据摄取、分布式数据管道构建、模型定义与训练、模型服务部署以及通过Argo Workflows实现端到端工作流的全过程。通过这些技术和方法的结合,可以高效地构建可扩展的机器学习系统,满足不同场景的需求。原创 2025-08-04 15:33:05 · 99 阅读 · 0 评论 -
16、机器学习分布式训练:从TensorFlow到Kubernetes与Kubeflow
本文介绍了从本地使用TensorFlow进行模型训练与超参数调优,到搭建Kubernetes集群实现容器编排,最后利用Kubeflow在Kubernetes上运行分布式机器学习工作负载的全过程。通过示例代码和操作步骤,帮助读者理解如何构建端到端的分布式机器学习训练流程,并展望了Kubeflow生态中Katib和KServe等工具的潜在应用。原创 2025-08-03 16:24:12 · 83 阅读 · 0 评论 -
15、机器学习系统的模型服务与端到端工作流
本文详细探讨了机器学习系统中模型服务和端到端工作流的设计与优化。模型服务部分介绍了如何通过复制服务模式和负载均衡器解决单节点服务性能瓶颈的问题,端到端工作流部分则提出了步骤记忆模式和异步模式以提升工作流执行效率。文章还介绍了TensorFlow的使用及其在模型训练、超参数调优等方面的应用,旨在构建高效、稳定的机器学习系统以提升用户体验和系统性能。原创 2025-08-02 14:31:03 · 41 阅读 · 0 评论 -
14、分布式机器学习系统构建:从理论到实践
本文探讨了如何构建一个高效、可扩展且可复用的分布式机器学习系统。从理论到实践,涵盖了数据摄入、模型训练、模型服务和结果展示等关键环节,并深入分析了调度策略、元数据管理、批处理和缓存模式的应用。通过使用 Fashion-MNIST 数据集,系统实现了基于 Kubernetes 的端到端工作流,采用集体通信模式优化模型训练效率,为实际应用提供了坚实基础。原创 2025-08-01 16:02:15 · 42 阅读 · 0 评论 -
13、机器学习中的调度与元数据模式:资源分配与故障处理策略
本文探讨了机器学习工作流中的两种关键模式:调度模式与元数据模式。调度模式通过合理分配计算资源,确保多用户环境下的高效运行,涵盖了公平共享调度、优先级调度和组调度等方法,并分析了其适用场景与限制。元数据模式则关注故障处理,通过记录关键元数据帮助识别失败原因,并采取适当的恢复策略,以减少对用户的负面影响。文章还提供了实际应用建议,并结合流程图和表格帮助读者更好地理解如何优化机器学习工作流的资源利用与可靠性。原创 2025-07-31 15:04:42 · 59 阅读 · 0 评论 -
12、机器学习工作流与操作模式解析
本文详细解析了机器学习工作流中的关键操作模式和调度策略。重点介绍了步骤记忆化模式,通过缓存优化减少冗余计算,加速工作流执行。同时,深入探讨了调度模式,包括公平共享调度、优先级调度和帮派调度,旨在解决共享集群中的资源分配问题,提高资源利用率,避免资源饥饿和死锁。文章还分析了机器学习系统中的常见故障及其处理方式,为构建高效、稳定的机器学习系统提供了实践指导。原创 2025-07-30 15:52:47 · 37 阅读 · 0 评论 -
11、机器学习工作流模式:提升效率与性能的关键策略
本文深入探讨了机器学习工作流中的关键设计模式,包括扇入和扇出模式、同步和异步模式以及步骤记忆化模式。通过这些模式,可以有效提升机器学习工作流的效率与性能。文章结合实际应用场景,详细分析了每种模式的适用条件、优势及注意事项,并通过mermaid流程图展示了模式在工作流中的具体应用。此外,文章还介绍了如何综合运用这些模式,以及在实际操作中需要注意的步骤与策略。最终,总结了这些模式的重要性,并展望了未来的发展方向。原创 2025-07-29 14:56:37 · 46 阅读 · 0 评论 -
10、机器学习模型服务与工作流模式解析
本文深入解析了机器学习模型服务的主要模式,包括事件驱动处理的特点与适用场景;探讨了工作流模式的基础概念,涵盖顺序工作流、有向无环图(DAG)、扇入扇出模式的构建与应用;同时分析了同步与异步模式在加速机器学习工作负载中的作用,并介绍了步骤记忆化模式如何提升性能。通过这些模式,可以构建更加高效、可扩展的机器学习系统,以应对复杂的现实场景需求。原创 2025-07-28 16:26:43 · 47 阅读 · 0 评论 -
9、事件驱动处理模式:优化模型服务系统资源利用
本文探讨了事件驱动处理模式在优化模型服务系统资源利用中的应用。通过构建共享资源池和按需分配资源,该模式能够根据用户请求实时响应,解决动态流量带来的资源浪费和性能瓶颈问题。文章以酒店价格预测为例,分析了传统模式的局限性,并介绍了事件驱动处理模式的工作流程、适用场景、优势以及应对拒绝服务攻击的策略。同时,文章对比了事件驱动模式与长期运行服务系统的区别,并展望了其未来发展趋势,为构建高效、灵活、智能的模型服务系统提供了参考方案。原创 2025-07-27 13:28:22 · 45 阅读 · 0 评论 -
8、模型服务模式:应对不同规模请求的解决方案
本文探讨了在模型服务系统中应对不同规模请求的两种关键模式:复制服务模式和分片服务模式。复制服务模式通过水平扩展和负载均衡提升系统处理大量小请求的能力,并实现高可用性;分片服务模式则通过将大型请求分割为子请求,利用多个分片并行处理,有效解决单个机器资源不足的问题。文章还对比了两种模式的适用场景、优势及潜在问题,并讨论了它们在实际应用中的组合使用策略,以构建高效、可扩展的模型服务系统。原创 2025-07-26 16:58:06 · 42 阅读 · 0 评论 -
7、分布式机器学习:训练与服务模式解析
本文详细解析了分布式机器学习中的训练与服务模式。针对训练过程,探讨了参数服务器模式和集体通信模式的优劣,以及弹性和容错模式在应对训练过程中意外故障的作用。在模型服务方面,介绍了复制服务模式和分片服务模式,分别适用于处理增长的服务请求和大型服务请求。通过合理选择这些模式,可以构建高效、可靠、可扩展的分布式机器学习系统,满足不同场景的需求。原创 2025-07-25 09:05:41 · 52 阅读 · 0 评论 -
6、分布式训练模式:参数服务器与集体通信模式解析
本文详细解析了分布式训练中的两种主要模式:参数服务器模式和集体通信模式。针对大规模数据集YouTube-8M的实体标签任务,文章从问题背景出发,探讨了两种训练模式的工作原理、优缺点以及适用场景,并提供了实际应用中的关键考虑因素。通过对比分析,帮助读者更好地选择适合的分布式训练方案以提升模型训练效率。原创 2025-07-24 13:24:03 · 43 阅读 · 0 评论 -
5、机器学习中的数据处理与分布式训练模式解析
本博客详细解析了机器学习中的数据处理与分布式训练模式。内容涵盖数据摄入的批处理模式与分片模式,多轮训练中的数据访问问题及缓存模式的解决方案,缓存存储位置的权衡,以及分布式训练的核心概念与模式,包括参数服务器模式和集体通信模式。同时,还介绍了分布式训练中常见的故障处理方法,如数据集损坏、网络不稳定和工作机器故障的应对措施。通过本博客的学习,读者可以全面掌握高效处理大规模数据集和复杂模型训练的技术手段,提升分布式机器学习系统的性能与可靠性。原创 2025-07-23 13:57:43 · 92 阅读 · 0 评论 -
4、数据摄入模式:批处理与分片策略解析
本文详细解析了机器学习中两种重要的数据摄入模式:批处理模式和分片模式。批处理模式适用于单台机器处理受内存和计算资源限制的大型数据集,而分片模式更适合处理无法在单台机器上容纳的极其庞大的数据集。文章探讨了它们的应用场景、优势、局限性,并提供了操作步骤与示例,帮助读者在实际任务中灵活选择和组合这些模式,以实现高效的模型训练。原创 2025-07-22 13:40:10 · 49 阅读 · 0 评论 -
3、数据摄取模式:从理论到实践
本文介绍了机器学习系统构建中的数据摄取模式,涵盖数据摄取的基础概念以及流式与非流式数据摄取的区别,并以Fashion-MNIST数据集为例,探讨了内存有限情况下的数据处理方法。文章进一步详细阐述了批处理模式、分片模式和缓存模式三种数据摄取策略,分别解决了大数据集处理效率、分布式计算和重复访问数据集效率的问题。通过这些模式,可以有效提升机器学习模型训练的性能与效率。原创 2025-07-21 14:21:19 · 44 阅读 · 0 评论 -
2、分布式机器学习系统入门与实践
本文详细探讨了分布式机器学习系统的构建与优化策略,涵盖了大规模数据处理的挑战、数据分区与并行训练方法、分布式系统的基本概念与复杂性、常见模式及其应用场景,以及模型训练和服务的优化技术。通过介绍实际案例和实践项目,帮助读者掌握如何设计和部署高效的分布式机器学习系统,以应对大规模数据和复杂应用的需求。原创 2025-07-20 11:47:03 · 44 阅读 · 0 评论 -
1、分布式机器学习模式入门
本文深入介绍了分布式机器学习系统的基本概念、模式和工具。从机器学习系统的重要性出发,探讨了大规模数据和复杂模型带来的挑战,并提出了应对策略,包括采用分布式系统和合适的模式。文章详细解析了分布式机器学习中的数据摄入、分布式训练、模型服务、工作流以及操作模式,并通过实际示例帮助读者理解。此外,还介绍了TensorFlow、Kubernetes、Kubeflow和Argo Workflows等常用工具的使用,为构建高效、可靠和可扩展的分布式机器学习系统提供了实践指导。原创 2025-07-19 09:57:06 · 49 阅读 · 0 评论
分享