1 老鼠相遇的概率是多少 ?
题目描述:
一个三角形三个顶点有 3 只老鼠,一声枪响,3 只老鼠开始沿三角形的边匀速运动,请问它们相遇的概率是多少?
分析与解答:
75%。
每只老鼠都有顺时针、逆时针两种运动方向。
3 只老鼠共有 2的3次方(8)种运动情况,
序号 | A | B | C |
1 | 顺 | 顺 | 顺 |
2 | 顺 | 顺 | 逆 |
3 | 顺 | 逆 | 顺 |
4 | 顺 | 逆 | 逆 |
5 | 逆 | 顺 | 顺 |
6 | 逆 | 顺 | 逆 |
7 | 逆 | 逆 | 顺 |
8 | 逆 | 逆 | 逆 |
只有当 3 只老鼠的运动方向都为顺时针或者逆时针时,它们才不会相遇,
而剩余的 6 种情况老鼠都会相遇,故老鼠相遇的概率为 6/8=75%。
题目描述:
2 现在只有两只杯子,容量分别是:3升和5升,问题是:在只用这两个杯子的前提下,如何才能得到4升水?假设:水可以无限使用。
分析与解答:
这类题有一个套路,小容量的杯子不断往大杯子里面倒水,大杯子满了之后就把大杯子全倒掉。
具体计算方法如下表格:
次数 | 3升杯子 | 5升杯子 |
1 | 0 | 0 |
2 | 3 | 0 |
3 | 0 | 3 |
4 | 3 | 3 |
5 | 1 | 5 |
6 | 1 | 0 |
7 | 0 | 1 |
8 | 3 | 1 |
9 | 0 | 4 【得到】 |
到这你可能发现一些规律了:
-
小杯不断往大杯中倒水
-
大杯满了的时候,大杯全部倒掉
-
小杯继续往大杯倒水
-
重复上面的步骤,直到得到目标水量,或者实现不了目标而退出循环
这是不是很像数学中的某一种运算呢?对,就是“%”取余运算。就拿上面的案例来说:
3 % 5 = 3,第一杯倒完后大杯中有3升水
6 % 5 = 1,6表示当前倒的是第二小杯水,第二小杯水倒完的时候,大杯可以得到1升水
9 % 5 = 4,表示第三小杯水倒完后,我们就能得到4升水了。
3 再举个例子,比如本题中的5升和7升杯子,如何得到4升水?
-
5 % 7 = 5
-
10 % 7 = 3
-
15 % 7 = 1
-
20 % 7 = 6
-
25 % 7 = 4
-
bingo,得到目标4升水了。