面试题的脑筋急转弯

本文通过两道有趣的数学问题探讨概率和算法思维:一是3只老鼠沿三角形边匀速运动相遇的概率分析,答案为75%;二是仅用3升和5升杯子如何通过倒水得到4升水的解题过程,揭示了取余运算的数学原理。通过这些问题,阐述了在实际问题中应用数学和逻辑的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 老鼠相遇的概率是多少 ?

题目描述:

一个三角形三个顶点有 3 只老鼠,一声枪响,3 只老鼠开始沿三角形的边匀速运动,请问它们相遇的概率是多少?

分析与解答:

75%。
每只老鼠都有顺时针、逆时针两种运动方向。

3 只老鼠共有 2的3次方(8)种运动情况,

序号ABC
1
2顺     
3
4顺  
5
6
7
8

只有当 3 只老鼠的运动方向都为顺时针或者逆时针时,它们才不会相遇,

而剩余的 6 种情况老鼠都会相遇,故老鼠相遇的概率为 6/8=75%。


题目描述:

2 现在只有两只杯子,容量分别是:3升和5升,问题是:在只用这两个杯子的前提下,如何才能得到4升水?假设:水可以无限使用。

分析与解答:

这类题有一个套路,小容量的杯子不断往大杯子里面倒水,大杯子满了之后就把大杯子全倒掉。

具体计算方法如下表格:

次数3升杯子5升杯子
100
230
303
433
515
610
701
831
904 【得到】

到这你可能发现一些规律了:

  1. 小杯不断往大杯中倒水

  2. 大杯满了的时候,大杯全部倒掉

  3. 小杯继续往大杯倒水

  4. 重复上面的步骤,直到得到目标水量,或者实现不了目标而退出循环

这是不是很像数学中的某一种运算呢?对,就是“%”取余运算。就拿上面的案例来说:

3 % 5 = 3,第一杯倒完后大杯中有3升水

6 % 5 = 1,6表示当前倒的是第二小杯水,第二小杯水倒完的时候,大杯可以得到1升水

9 % 5 = 4,表示第三小杯水倒完后,我们就能得到4升水了。
 


3 再举个例子,比如本题中的5升和7升杯子,如何得到4升水?

  • 5 % 7 = 5

  • 10 % 7 = 3

  • 15 % 7 = 1

  • 20 % 7 = 6

  • 25 % 7 = 4

  • bingo,得到目标4升水了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fish_study_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值