[Go]通用的 MapReduce 工具函数

前言

最近在测试学习 aws s3 sdk 中的 Multi Part Upload 功能,其基本步骤就是 CreateMultipartUpload 后, 串行或并行地 UploadPart ,最后 CompleteMultipartUploadAbortMultipartUpload 收尾。为了最高效率地完成整个传输,中间的 UploadPart 部分使用多个 goroutine 并发地上传是最快地。因此尝试着写了一下,并完美地实现。

扩展

虽然已经完成对应功能的开发和测试,但仔细分析一下,发现有大量的模式代码,比如:

    1. 创建指定个数的 goroutine, 并使用 sync.WaitGroup 管理和同步.
    1. 使用 chan 提供待处理数据,并接受处理结果
    1. 看起来整个处理流程就是典型的 map-reduce 结构 或者 说是 Java Stream/ParallelStream 中的 Map, Reduce.

网上搜索一下, 发现很多人也有这个需求,也写了不少库,但实测了一下,发现根本不好用。于是决定自己再造一个“自己觉得比较好的”轮子,因此有了 mapreduce 和本篇文章。

主要功能函数

  • func Map[T any, R any](ctx context.Context, inputs []T, mapper MapperFunc[T, R]) ResultsMap[T, R]
    这是最简单的同步 Map, 通过泛型的 T 和 R 支持任意类型的数据转换
  • func ParallelMap[T any, R any](ctx context.Context, inputs []T, concurrency int, name string, mapper MapperFunc[T, R]) ResultsMap[T, R]
    这是并发的Map,内部回启动最多 2+concurrency 个 goroutine, 并发的处理完 inputs 中的所有数据. 并且结果可以按照输入的顺序排序。
  • func StreamMap[T any, R any](ctx context.Context, concurrency int, name string, startIndex int64, chInput chan T, mapper MapperFunc[T, R]) chan *OutputItem[T, R]
    类似纤程池的形态, 可以无限地处理 chInput 中的数据,并将结果写入 OutputItem.

额外说明

错误处理

作为一个并发处理框架,对于错误情况也应该能很好的支持,有的时候, 一项元素处理失败了不影响整体的流程处理, 但有的时候其中一项失败, 就不需要继续进行(比如 S3 的 multi part upload, 如果其中一部分失败, 那其他的部分再上传也没有意义了)。因此代码中定义了 OperationType 类型, 其值分为
ContinueStop , 框架只根据这个值确认是否继续处理, 而不是根据 mapper 函数是否返回 error.

结果返回

并发处理时, 每个 Item 的处理时长/顺序等是不同的,而且有可能因为错误造成部分输入元素尚未处理即结束,因此返回的结果默认情况下不一定能和输入顺序一一对应,因此采用了 Map 的方式保存输入序号 => 结果。

排序

s3 的 multi part upload 在调用 CompleteMultipartUpload 时参数 Parts 需要是排好序的,因此通过 ConvertResult 函数对结果进行排序。

测试代码

注意: 并发处理带错误数据的时候, 由于错误项的处理顺序比较随机, 因此我使用了 concurrency: 1 的方式保证 UT 能顺利判断。如果将 concurrency 更改为大于1的情况, 其 want 不一定能满足. 比如: “error with stop” 时, 如果 concurrency > 1, 结果有可能就不是 [1 2 3 0] 而是 [1 2 3 0 4 5] 了, 这种属于正常现象(自己更改测试一下即可理解 )


func TestMap(t *testing.T) {
	type args struct {
		ctx         context.Context
		inputs      []string
		concurrency int
		mapper      MapperFunc[string, int]
	}
	tests := []struct {
		name     string
		args     args
		want     []int
		wantErrs []error
		opType   OperationType
	}{
		{
			name: "all successful",
			args: args{ctx: context.Background(),
				inputs: []string{"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}, concurrency: runtime.NumCPU(), mapper: convertStopFunc,
			},
			want:     []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
			wantErrs: []error{nil, nil, nil, nil, nil, nil, nil, nil, nil, nil},
			opType:   Continue,
		},

		{
			name:     "error with continue",
			args:     args{ctx: context.Background(), inputs: []string{"1", "not", "3"}, concurrency: 1, mapper: convertContinueFunc},
			want:     []int{1, 0, 3},
			wantErrs: []error{nil, numberErrHelper("not"), nil},
			opType:   Continue, // 出现过错误,但忽略了. 如果采用 Continue 的方式来处理错误, 则只能自己遍历 ResultsMap 的结果集才知道是否有错误
		},

		{
			// 注意: 如果并发度 concurrency > 1, 则结果个数不确定, 但肯定至少有一个错误的
			name: "error with stop",
			args: args{ctx: context.Background(), inputs: []string{"1", "2", "3", "not_exist", "4", "5", "6"},
				concurrency: 1, mapper: convertStopFunc},
			want:     []int{1, 2, 3, 0},
			wantErrs: []error{nil, nil, nil, numberErrHelper("not_exist")},
			opType:   Stop,
		},

		{
			name: "error last", // 最后一个数据出错时,其返回的结果数组长度和输入数组的长度相同. 因此不能依靠数组长度来判断是否有问题.
			args: args{ctx: context.Background(), inputs: []string{"1", "2", "3", "not_exist"},
				concurrency: 1, mapper: convertStopFunc},
			want:     []int{1, 2, 3, 0},
			wantErrs: []error{nil, nil, nil, numberErrHelper("not_exist")},
			opType:   Stop,
		},
	}
	for _, tt := range tests {
		t.Run(tt.name, func(t *testing.T) {
			if true {
				//使用 Map 串行转换
				got := Map(tt.args.ctx, tt.args.inputs, tt.args.mapper)
				//flog.Infof("Map name=%s, got=%+v", tt.name, got)
				realResult, errs, opType := got.ConvertResult()
				du.GoAssertEqual(t, tt.want, realResult, "want")
				du.GoAssertEqual(t, tt.wantErrs, errs, "wantErrs")
				du.GoAssertEqual(t, tt.opType, opType, "opType")
			}
			if true {
				//使用 ParallelMap 并行转换
				got := ParallelMap(tt.args.ctx, tt.args.inputs, tt.args.concurrency, tt.name, tt.args.mapper)
				//flog.Infof("ParallelMap name=%s, got=%+v", tt.name, got)
				realResult, errs, opType := got.ConvertResult()
				du.GoAssertEqual(t, tt.want, realResult, "want")
				du.GoAssertEqual(t, tt.wantErrs, errs, "wantErrs")
				du.GoAssertEqual(t, tt.opType, opType, "opType")
			}
		})
	}
}

func TestStreamMap(t *testing.T) {
	ctx := context.Background()
	inItemCount := 10000
	chInput := make(chan string)
	go func() {
		for i := 0; i < inItemCount; i++ {
			idx := rand.Intn(100)
			chInput <- fmt.Sprintf("%d", idx)
		}
		close(chInput)
	}()
	//启动 100 个 纤程并行处理 inItemCount(10000) 个数据的转换
	chOutput := StreamMap(ctx, 100, "testStreamMap", 100, chInput, convertContinueFunc)

	mapResultCount := 0
	for outItem := range chOutput {
		mapResultCount++
		flog.Debugf("outItem=%v", outItem)
	}
	du.GoAssertEqual(t, inItemCount, mapResultCount, "inItemCount")
}

##补充信息

    1. 因为众所周知的原因, 以后 go-library 的代码将只更新 https://gitee.com/fishjam/go-library, 不再更新 github 上的版本.
    1. S3 的 multi upload 不需要大家自己写, manager.NewUploader 已经提供了完整的实现, 比大多数人实现得更好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值