题目描述:
Given n non-negative integers a1, a2, …, an, where each represents a point at coordinate (i, ai). n vertical lines are drawn such that the two endpoints of line i is at (i, ai) and (i, 0). Find two lines, which together with x-axis forms a container, such that the container contains the most water.
Note: You may not slant the container.
(给定n个非负整数a1,a2 ,…,an,其中每个数代表在坐标(i, ai)的一个点。 n条垂线被绘制,使得线i的两个端点是在(i, ai )和(i ,0)。找到两条线,其与X轴一起形成了一个容器,使得所述容器包含最水。
注意:你不能倾斜的容器。)
题目意思就是给一个数组,如[3,4,5,6,8,14,9],其中的3代表从[1,0]到[1,3]的一条线段,4代表从[2,0]到[2,4]的线段,以此类推,要求求出这些线段中哪两条和x轴一起可以围成一个最大的蓄水池。
解题思路:
我们假设最初的最大蓄水量为0。然后我们分别从数组的两侧进行扫描,由于不允许倾斜,因此蓄水量仅与较低的那个边有关。因此
area=min(height[right],height[left])∗(right−left)
如果height[left] < height[right],那么left右移,找到一个比height[left]大的值。反之,则right左移。同时需要保持跟踪最大值。
AC代码
public class Solution {
public int maxArea(int[] height) {
if (height == null | height.length < 2) {
return 0;
}
//max 为最大蓄水面积 left right分别为坐标轴上两侧点
int max = 0;
int left = 0;
int right = height.length - 1;
while (left < right) {
max = Math.max(max, Math.min(height[right], height[left]) * (right - left));
if (height[left] < height[right]) {
left++;
} else {
right--;
}
}
return max;
}
}