【题目描述】
这题是一个三维的迷宫题目,其中用‘.’表示空地,‘#’表示障碍物,‘S’表示起点,‘E’表示终点,求从起点到终点的最小移动次数,解法和二维的类似,只是在行动时除了东南西北移动外还多了上下。可以上下左右前后移动,每次都只能移到相邻的空位,每次需要花费一分钟,求从起点到终点最少要多久。
【输入】
多组测试数据。
一组测试测试数据表示一个三维迷宫:
前三个数,分别表示层数、一个面的长和宽,后面是每层的平面图。前三个数据为三个零表示结束。
【输出】
最小移动次数。
【输入样例】
3 4 5
S…
.###.
.##…
###.#
##.##
##…
#.###
####E
1 3 3
S##
#E#
0 0 0
【输出样例】
Escaped in 11 minute(s).
Trapped!
【提示】
对于题目给出数据的含义就是输入l,r,c,分别代表迷宫有l层,每层长宽分别是c,r。对于数据以可以这样移动:
(1,1,1)->(1,1,2)->(1,1,3)->(1,1,4)->(1,1,5)->(1,2,5)->
(1,3,5)->(1,3,4)->(1,4,4)->(2,4,4)->(2,4,5)->(3,4,5)
共11步就可以到达终点 对于数据二明显不能到达,则输出Trapped!
这题用BFS解,每次去队首元素,如果是终点则输出结果移动的次数,否则,从该点开始分别向东南西北上下移动(如果可以走的话)并继续搜,如果到队列为空还没搜到解法,则说明无解。
#include<bits/stdc++.h>
using namespace std;
struct node
{
int z;
int x;
int y;
int step;
node(){}
node(int z1,int x1,int y1,int step1):z(z1),x(x1),y(y1),step(step1){}
};
int l,n,m;
int vis[35][35][35];
char mapp[35][35][35];
int u[6][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1}};
void bfs(node s,node e)
{
bool flag=true;
queue<node>Q;
Q.push(node(s.z,s.x,s.y,s.step));
while(!Q.empty()){
node a=Q.front();
Q.pop();
for(int i=0;i<6;i++){
int zz=a.z+u[i][0];
int xx=a.x+u[i][1];
int yy=a.y+u[i][2];
if(zz>=0&&zz<l&&xx>=0&&xx<n&&yy>=0&&yy<m&&(!vis[zz][xx][yy])&&mapp[zz][xx][yy]=='.'){
Q.push(node(zz,xx,yy,(a.step+1)));
vis[zz][xx][yy]=1;
if(zz==e.z&&xx==e.x&&yy==e.y){
printf("Escaped in %d minute(s).\n",a.step+1);
flag=false;
return ;
}
}
}
}
if(flag) printf("Trapped!\n");
}
int main()
{
while(scanf("%d%d%d",&l,&n,&m)==3,l+n+m){
node s,e;
memset(vis,0,sizeof(vis));
for(int k=0;k<l;k++){
for(int i=0;i<n;i++){
scanf("%s",mapp[k][i]);
}
}
for(int k=0;k<l;k++){
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(mapp[k][i][j]=='S'){
s.z=k;
s.x=i;
s.y=j;
s.step=0;
}
if(mapp[k][i][j]=='E'){
e.z=k;
e.x=i;
e.y=j;
mapp[k][i][j]='.';
}
}
}
}
bfs(s,e);
}
return 0;
}