km算法与最佳匹配

KM算法

该算法是通过给每个顶点一个标号(叫做顶标)来把求最大权匹配的问题转化为求完备匹配的问题的。设顶点Xi的顶标为A[ i ],顶点Yj的顶标为B[ j ],顶点Xi与Yj之间的边权为w[i,j]。在算法执行过程中的任一时刻,对于任一条边(i,j),A[ i ]+B[j]>=w[i,j]始终成立。

  KM算法的正确性基于以下定理:

  若由二分图中所有满足A[ i ]+B[j]=w[i,j]的边(i,j)构成的子图(称做相等子图)有完备匹配,那么这个完备匹配就是二分图的最大权匹配。

  首先解释下什么是完备匹配,所谓的完备匹配就是在二部图中,X点集中的所有点都有对应的匹配或者是

  Y点集中所有的点都有对应的匹配,则称该匹配为完备匹配。

  这个定理是显然的。因为对于二分图的任意一个匹配,如果它包含于相等子图,那么它的边权和等于所有顶点的顶标和;如果它有的边不包含于相等子图,那么它的边权和小于所有顶点的顶标和。所以相等子图的完备匹配一定是二分图的最大权匹配。

  初始时为了使A[ i ]+B[j]>=w[i,j]恒成立,令A[ i ]为所有与顶点Xi关联的边的最大权,B[j]=0。如果当前的相等子图没有完备匹配,就按下面的方法修改顶标以使扩大相等子图,直到相等子图具有完备匹配为止。

  我们求当前相等子图的完备匹配失败了,是因为对于某个X顶点,我们找不到一条从它出发的交错路。这时我们获得了一棵交错树,它的叶子结点全部是X顶点。现在我们把交错树中X顶点的顶标全都减小某个值d,Y顶点的顶标全都增加同一个值d,那么我们会发现:

  1)两端都在交错树中的边(i,j),A[ i ]+B[j]的值没有变化。也就是说,它原来属于相等子图,现在仍属于相等子图。

  2)两端都不在交错树中的边(i,j),A[ i ]和B[j]都没有变化。也就是说,它原来属于(或不属于)相等子图,现在仍属于(或不属于)相等子图。

  3)X端不在交错树中,Y端在交错树中的边(i,j),它的A[ i ]+B[j]的值有所增大。它原来不属于相等子图,现在仍不属于相等子图。

  4)X端在交错树中,Y端不在交错树中的边(i,j),它的A[ i ]+B[j]的值有所减小。也就说,它原来不属于相等子图,现在可能进入了相等子图,因而使相等子图得到了扩大。

  现在的问题就是求d值了。为了使A[ i ]+B[j]>=w[i,j]始终成立,且至少有一条边进入相等子图,d应该等于:

  Min{A[ i ]+B[j]-w[i,j] | Xi在交错树中,Yi不在交错树中}。

 

 

程序:

 

function find(x:longint):boolean;
var
  y:longint;
begin
  vx[x]:=true;
  for y:=1 to n do
  if (not vy[y])and(lx[x]+ly[y]=w[x,y]) then
      begin
        vy[y]:=true;
        if (b[y]=0)or find(b[y]) then
         begin
           b[y]:=x;
           exit(true);
         end;
     end;
  exit(false);
end;
 
procedure KM;
begin
  for i:=1 to n do
  begin
    max:=0;
    for j:=1 to n do
    if w[i,j]>max then
    max:=w[i,j];
    lx[i]:=max;
  end;
  for k:=1 to n do
  repeat
    fillchar(vx,sizeof(vx),0);
    fillchar(vy,sizeof(vy),0);
    if find(k) then break;
    d:=maxlongint;
    for i:=1 to n do
    if vx[i] then
      for j:=1 to n do
      if not vy[j] then
        if lx[i]+ly[j]-w[i,j]<d then
        d:=lx[i]+ly[j]-w[i,j];
    for i:=1 to n do
    begin
      if vx[i] then dec(lx[i],d);
      if vy[i] then inc(ly[i],d);
    end;
  until false;
end;      

 

 

KM算法,全称Kuhn-Munkres算法,是一种用于求解二分图的最佳匹配算法。它可以找到一个匹配,使得两个集合内的所有顶点能够一一匹配,并且获得的权值最大或最小。KM算法在求解带权二分图匹配时,融合了匈牙利算法的思想。算法的步骤如下: 1. 初始化:将两个集合内的顶点分别标记为未被匹配状态。 2. 根据特定的规则,遍历第一个集合内的顶点。 3. 对于每个选中的顶点,遍历第二个集合内的顶点,找到其相连的较优边。较优边的选择可以根据具体情况而定,可以是较大的权值或者较小的权值。 4. 如果找到了满足条件的边,判断该边对应的第二个顶点是否已经被匹配。如果该顶点还未被匹配,则直接将其第一个顶点进行匹配。 5. 如果该顶点已经被匹配,但是匹配的顶点还可以找到其他的可匹配顶点,则将该顶点重新匹配给第一个顶点。 6. 循环执行步骤2-5,直到无法找到满足条件的边。 通过这样的循环匹配KM算法能够找到二分图的最佳匹配。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [二分图的完全匹配---KM算法](https://blog.csdn.net/li13168690086/article/details/81557890)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值