1 图的基本概念
无向图:
简而言之,边不带方向的图就是无向图。
有向图:
简而言之,边带方向的图就是有向图。
特殊定义:
有限图:边数和顶点数都是有限个的图。
n阶图:n个顶点的图。
零图:没有边的图。
平凡图:只有一个顶点,而且没有边的图(1阶零图)。
空图:没有顶点的图(自然也没有边,空图也是零图)。
环:边的两头都是同一个顶点,这个边就是环。
孤立点:没有边连着的点。
无向图顶点的度:
顶点的度:一个顶点有几个边连接着,就是几度(注意,环会提供两度)。
悬挂顶点:度数为1的顶点。
悬挂边:悬挂顶点连着的那个边。
最小度:一个图中各顶点度数中最小的数值。
最大度:一个图中各顶点度数中最大的数值。
有向图顶点的度
出度:从一个顶点出去的边的边数。
入度:从外面进一个顶点的边数。
总度数:总度数=入度+出度。
最大入度:图中所有顶点中入度最大的数值。
最大出度:图中所有顶点中出度最大的数值。
最小入度:图中所有顶点中入度最小的数值。
最小出度:图中所有顶点中出度最小的数值。
握手定理
图的顶点度数和数量是边数的2倍,证明很显然,一个边会提供两度。
由握手定理推出的推论,图的奇度顶点为偶数个。证:如果有奇数个奇度顶点,那么图的总度数必定为奇数,而根据握手定理,总度数必定为偶数,矛盾。
度数列
度数列就是将一个图中所有顶点的度按一定顺序写出来。注意:判断一个数列是否能构成度数列,先看是否满足握手定理推论(偶数个奇度顶点)。
简单图
简单图:不存在平行边的图,即每两个顶点之间最多只有一条边。
完全图和正则图
无向完全图就是任一个顶点都与其他所有顶点之间有边,边数:n(n-1)/2,最大度=最小度=n-1,记作Kn。
k—正则图:每个顶点都是k度的无向简单图。
圈图和轮图
圈图Cn就是围成一个圈的图,轮图Wn就是在圈图Cn-1中放一个点,再把这个点和其它所有点连起来。(注:圈图顶点数>=3,轮图顶点数>=4)
子图
子图:从母图中选一些点和边构成的图就是该母图的子图。
生成子图:删边不删点。
导出子图:选母图中一些点构成点集,这些点和以它们为端点的边构成的图就是这个这个点集的导出子图;选母图中一些边构成边集,这些边和与它们关联的顶点构成的图就是这个这个边集的导出子图;
补图
补图:将原图补成完全图,再将原图中有的边删掉,就是补图。
图的同构
同构:同构就是指同一个图的不同画法。找非同构的方法就是根据条件