1、 图的基本概念:
图论中的图由结点和连接结点的边组成。边可以是有方向的,也可以是无方向的。由有方向的边构成的图称为有向图,由无方向的边构成的图称为无向图。
2、几个重要的定义:
(1)平行边:关联一对结点的多于一条的边(在有向图中平行边的方向是一致的)。
(2)邻接:如果有边关联与一对结点,则称这对结点是邻接的。
(3)环:一条边的两个端点关联于同一个节点,每个环给它的结点提供 2 度。
(4)孤立点:任何边都不关联的点。
(5)n阶图:结点数为n的图。
(6)零图:只有结点没有边的图。
(7)平凡图:1 阶零图称为平凡图。
(8)空图:结点集为空集的图。
度的概念:
1、度数(简称 度):边和结点关联的次数之和为该结点的度数,记作d(Vi)。
2、出度即d+(Vi):以结点为起点所关联的边数。
3、入度即d-(Vi):以结点为终点所关联的边数。
4、悬挂结点:度数为 1 的结点。
5、悬挂边:悬挂结点所对应的边。
6、❤️握手定理(图论的基本定理):所有结点的度数之和为边数的 2 倍,即d(Vi)=2e。
7、❗️❗️握手定理的推