差分高斯函数与拉普拉斯函数的近似关系

函数

差分高斯函数为
D ( x , y , σ ) = ( G ( x , y , k σ ) − G ( x , y , σ ) ) ∗ I ( x , y ) D(x,y,\sigma)=(G(x,y,k\sigma)-G(x,y,\sigma))*I(x,y) D(x,y,σ)=(G(x,y,kσ)G(x,y,σ))I(x,y)
拉普拉斯函数为
σ 2 ∇ 2 G σ^2 ∇^2 G σ22G

近似关系推导

从热传播方程
∂ G ∂ σ = σ ∇ 2 G \frac{∂G}{∂σ}=σ∇^2 G σG=σ2G
可知,可以用 ∂ G / ∂ σ ∂G/∂σ G/σ的有限差分近似 σ ∇ 2 G σ∇^2 G σ2G
σ ∇ 2 G = ∂ G ∂ σ ≈ G ( x , y , k σ ) − G ( x , y , σ ) k σ − σ σ∇^2 G=\frac{∂G}{∂σ}≈\frac{G(x,y,kσ)-G(x,y,σ)}{kσ-σ} σ2G=σGkσσG(x,y,kσ)G(x,y,σ)
从而有
G ( x , y , k σ ) − G ( x , y , σ ) ≈ ( k − 1 ) σ 2 ∇ 2 G G(x,y,kσ)-G(x,y,σ)≈(k-1) σ^2 ∇^2 G G(x,y,kσ)G(x,y,σ)(k1)σ22G
上式说明doG函数在尺度上有一个常数因子不同的时候(即 G ( x , y , k σ ) G(x,y,kσ) G(x,y,kσ) G ( x , y , σ ) G(x,y,σ) G(x,y,σ)两者的尺度一个为 σ \sigma σ,一个为 k σ k\sigma kσ,两者关系为一个是另一个的常数 k k k倍),通过相减,就可以近似为包含了 σ 2 σ^2 σ2尺度正规化所需要的尺度不变拉普拉斯函数 σ 2 ∇ 2 G σ^2 ∇^2 G σ22G
除此以外,上式中还有一个 ( k − 1 ) (k-1) (k1)因子。因为只要相减的两个高斯函数的模糊度关系为一个是另一个的常数 k k k倍,那么所有的近似都会有这个 ( k − 1 ) (k-1) (k1)因子(比如 G ( x , y , k 2 σ ) − G ( x , y , k σ ) ≈ ( k − 1 ) k 2 σ 2 ∇ 2 G G(x,y,k^2σ)-G(x,y,kσ)≈(k-1)k^2 σ^2 ∇^2 G G(x,y,k2σ)G(x,y,kσ)(k1)k2σ22G),从而不会影响极值点位置。(这里还有一点理解问题?)
虽然说当 k → 1 k\rightarrow1 k1时,近似误差趋近于零,意味着两个高斯函数的尺度相差越小,这个近似的误差就越小。但在实验中发现,尺度差异很明显的情况下( k = 2 k=\sqrt{2} k=2 ),这个近似几乎对极值点检测或者定位稳定性没有影响。

参考资料:David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值