机器学习
文章平均质量分 58
雕刻刀
这个作者很懒,什么都没留下…
展开
-
社区发现算法Louvain
Louvain 方法是一种社区检测算法,通常用于在网络或图中找到紧密连接的社区或群组。社区检测算法本质上是一种聚类算法,它旨在将图中的节点分组,使得组内的节点之间有着更紧密的连接,而组间的连接相对较稀疏。在社区检测领域,“社区"通常被称为"社团”(community)或"子图"(subgraph),也可能会使用其他类似的术语,如"模块"(module)或"群体"(cluster)。Louvain 方法通过优化模块度度量来找到网络中更密集内部连接的节点群体(社区),这些群体比与网络的其余部分的连接更密切。原创 2024-02-20 00:02:17 · 971 阅读 · 0 评论 -
条件独立性检验、皮尔森相关、协方差矩阵
(3)协方差矩阵:在PC算法中,数据集的协方差矩阵用于描述变量之间的线性关系。它的取值范围在-1到1之间,其中1表示完全正相关,-1表示完全负相关,0表示无线性关系。在相关性和协方差中的应用:皮尔逊相关系数常用于度量两个变量之间的线性相关性,它可以通过协方差和变量的标准差来计算。在PC算法中的应用:在PC算法中,条件独立性检验用于判断是否可以在图结构中删除某些边,从而逐步构建骨架图。相关系数和协方差的关系:相关系数是协方差的标准化形式,通过将协方差除以各自变量的标准差来消除量纲。原创 2024-02-20 00:01:45 · 602 阅读 · 0 评论 -
简述马尔可夫链【通俗易懂】
俄国数学家 Andrey Andreyevich Markov 研究并提出一个用数学方法就能解释自然变化的一般规律模型,被命名为马尔科夫链(Markov Chain)。马尔科夫链为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆性 ”,即下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关(条件独立)。这种特定类型的“无记忆性 ”称作马尔可夫性质。马尔科夫链认为过去所有的信息都被保存在了现在的状态下了。比如这样一串数列。原创 2023-11-24 11:13:07 · 1121 阅读 · 2 评论 -
机器学习中的先验、后验和似然
机器学习中的先验、后验和似然转载 2023-02-11 11:27:09 · 3553 阅读 · 0 评论