昆仑芯P800万卡集群成功点亮,将进一步点亮3万卡集群

近日,百度智能云成功点亮昆仑芯三代万卡集群,这也是国内首个正式点亮的自研万卡集群。百度智能云将进一步点亮3万卡集群。

国产昆仑芯万卡集群以及未来三万卡集群的建设,从硬件到软件,技术挑战是全方位的。而24年9月升级的百度百舸AI异构计算平台4.0,围绕落地大模型全旅程的算力需求,在集群创建、开发实验、模型训练、模型推理四大方面,能为企业提供“多、快、稳、省”的AI基础设施,在万卡集群的建设中发挥了至关重要的作用。

首先,突破硬件扩展性瓶颈,如卡间互联的拓扑限制,避免通信带宽成为瓶颈;同时,围绕芯片及集群功耗,基于万卡规模常规方案功耗可达十兆瓦或更高,采用创新性散热方案,从而解决万卡集群的能效与散热问题;完善模型的分布式训练优化,采用高效并行化任务切分策略,训练主流开源模型的集群MFU提升至58%;在提升稳定性方面,提供容错与稳定性机制,避免由于单卡故障率随规模指数上升而造成的万卡集群有效性大幅下降,保障有效训练率达到98%;最后,针对机间通信带宽需求,建设超大规模HPN高性能网络,优化拓扑结构,从而降低通信瓶颈,带宽有效性达到90%以上

同时,昆仑芯作为百度自研的AI芯片,凭借其独特的技术优势,在百舸4.0的能力加持下,在生成式人工智能时代展现出了巨大的竞争力。

未来一年,将是各种AI原生应用爆发的黄金时期。自研芯片和万卡集群的建成带来了强大的算力支持,同时有效提升百度和客户的资源整体利用率,降低大模型训练成本,推动了模型降本的趋势,为整个行业提供了新的思路和方向。

随着国产大模型的兴起,万卡集群已从单纯算力供给逐渐向“有效”算力供给过渡,通过模型优化、并行策略、有效训练率提升、动态资源分配等手段,智能调度任务,将训练、微调、推理任务混合部署,最大化提升集群综合利用率,降低单位算力成本,从而真正发挥算力效能。百度智能云将始终陪伴在所有企业身旁,通过本次万卡集群点亮和应用落地,持续为企业提供源源不断的稳定、高效的算力动能

### 昆仑 AI 加速在 Ubuntu 上的配置教程 #### 安装前准备 为了确保昆仑 AI 加速能够在 Ubuntu 环境下正常工作,需确认操作系统环境满足最低硬件和软件要求。建议使用最新稳定版本的 Ubuntu LTS 版本。 #### 下载驱动程序和支持包 访问官方资源库下载适用于昆仑设备的驱动程序和其他必要组件[^2]: ```bash wget http://mirrors.bclinux.org/bclinux/isos/Hygon/ ``` 注意检查并选择适合当前 Linux 发行版的具体文件。 #### 添加昆仑源到 APT 源列表 编辑 `/etc/apt/sources.list` 文件,在其中加入昆仑提供的 apt 源地址以便后续安装命令可以直接调用: ```bash sudo nano /etc/apt/sources.list ``` 向该文件追加如下行(假设为 Hygon 提供的服务): ```plaintext deb [arch=amd64] http://mirrors.bclinux.org/bclinux/isos/Hygon ./ ``` 保存更改后执行更新索引操作: ```bash sudo apt-get update ``` #### 安装昆仑工具链及相关依赖项 通过 apt 命令来完成昆仑 SDK 及其所需依赖库的一键式安装过程: ```bash sudo apt install kunchen-sdk -y ``` 这一步骤会自动处理所有必要的依赖关系,并将昆仑开发平台集成至现有环境中。 #### 设置环境变量 为了让系统能够识别新安装的昆仑工具集,需要设置一些特定路径作为全局环境变量的一部分。可以通过修改 `~/.bashrc` 或者其他 shell 初始化脚本来实现这一点: ```bash echo 'export PATH=$PATH:/opt/kunchen/bin' >> ~/.bashrc && source ~/.bashrc ``` 以上命令使得每次启动终端时都会加载这些配置信息。 #### 测试安装成果 最后可以运行简单的测试样例验证整个流程是否成功结束。通常情况下,SDK 中包含了多个用于展示功能特性的例子项目可供尝试。比如对于 PaddleOCR 推理加速的支持情况就可以参照文档说明来进行实际演练[^3]: ```python from paddleocr import PaddleOCR, draw_ocr import cv2 # 使用 GPU 进行预测 ocr = PaddleOCR(use_gpu=True) img_path = './example.jpg' result = ocr.ocr(img_path) for line in result: print(line) ``` 上述 Python 脚本展示了基于昆仑 XPU 设备利用飞桨框架下的 OCR 功能模块进行图像文字提取的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值