重磅!中国网络空间安全协会发布《2020年中国网络安全产业统计报告》

6月29日,中国网络空间安全协会(以下简称“协会”)发布了《2020年中国网络安全产业统计报告》(以下简称“《报告》”),共有4000余人出席线上发布会。《报告》对国内绝大多数具备网络安全技术和产品自有研发能力的网络安全企业进行了梳理、统计和分析,力图全面、客观、清晰地反映我国网络安全市场规模,对系统了解我国网络安全产业发展概况具有重要参考价值

协会自2019年以来,组织开展了深入的行业调研工作。为进一步发挥好协会参谋助手和桥梁纽带作用,更好地为产业发展服务,协会首次组织数世咨询等国内具有长期开展网络安全行业调研分析经验的第三方调研机构,经过四个月的大量沟通及调研工作,并征求多方专家意见,形成了此份报告。

《报告》首次将网络安全产业市场规模分为四个统计口径,从“行业总收入”“业务总收入”“技术、产品与服务总收入”“技术、产品与服务纯收入”四个维度分别进行统计,为客观清晰地反映我国网络安全产业的真实状况提供参考。除此之外,《报告》对网络安全业务分类占比情况,网络安全企业收入水平、业务类型、区域分布、上市企业、从业者以及网络安全风险与战略投资趋势等情况进行了分析描述。在此基础上,提出对未来我国网络安全产业的相关发展建议。

据悉,《报告》调研对象700余家,交流访谈500余次,查阅资料5000余份次。在我国网络安全市场规模总体量相对较小的前提下,调研结果能够比较准确地反映我国网络安全产业的真实情况,相关前景预测和产业发展建议,基于调研团队对网络安全行业从诞生到快速发展的多年观察,既可以为相关主管部门制定产业政策提供参考,为网络安全企业制定战略规划提供依据,也可以为市场投融资等重要活动提供数据支撑。

中国网络空间安全协会秘书长李欲晓表示,促进行业的发展和技术的进步是行业协会的初心和使命。任何领域、行业或产业的发展都离不开对历史、现状的准确把握和判断,并以此作为产业健康发展的风向标和指南,此为中国网络空间安全协会发布《2020中国网络安全产业统计报告》的核心立意所在。报告也参考了国内很多研究机构和兄弟行业组织、联盟的相关报告。由于网络安全技术与产业的碎片化和复杂性,报告对国家网络安全产业做出的调研统计分析还很有限,这主要表现在本次统计报告发布内容主要针对的是网络安全产业的运营情况,关系网络安全产业发展未来的技术趋势、市场环境、政策法律、支撑能力等数据分析尚需要进一步调研完善;产业统计仅集中于供给侧能力的初步分析,还缺少对需求侧的调研统计;特别是我会第一次发布此类报告,还需要在机制和能力上逐步完善,扩大调研对象,形成常态调研统计,深入研究分析产业发展特点和规律,逐步完善调查统计工作的准确性、实用性、时效性,为政府宏观决策、产业发展和技术进步提供有力支撑。

今年是“十三五”规划收官之年,也是“十四五”规划起步之年,下一步协会将与会员单位、广大业界同仁、专家学者一道,把产业统计工作常态化、系统化,摸清产业底数,为网络安全产业的健康和可持续发展继续贡献力量。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Spark 3.0 是一次重磅发布,经过近两的开发,它在流处理、Python 和 SQL 方面都进行了重大更新。以下是对这些更新的全面解读: 1. 流处理:Spark 3.0 引入了结构化流处理 API 的重大更新,包括新的流式查询引擎和增强的流式数据源 API。这些更新使得 Spark 更加适合处理实时数据流,并提供了更好的容错机制和更高的性能。 2. Python:Spark 3.0 对 Python API 进行了重大更新,包括对 Pandas UDF 的支持和对 Python 3 的全面支持。这些更新使得 Python 用户能够更加方便地使用 Spark,并且能够更好地利用 Python 生态系统中的工具和库。 3. SQL:Spark 3.0 引入了许多 SQL 方面的更新,包括 ANSI SQL 支持、新的优化器和执行引擎、更好的分区管理和更好的数据源 API。这些更新使得 Spark 更加适合处理大规模数据,并提供了更好的性能和可扩展性。 总的来说,Spark 3.0 的更新使得它更加适合处理实时数据流和大规模数据,并提供了更好的性能和可扩展性。同时,它也更加方便 Python 用户使用,并且能够更好地利用 Python 生态系统中的工具和库。 ### 回答2: 近日,Apache Spark 社区正式宣布发布了最新版 Spark 3.0。这是一次重磅的更新,涵盖了流处理、Python 和 SQL 三大方面的内容。下面就让我们来逐一解读这些更新吧。 1. 流处理:Spark 3.0 引入了一项名为 Structured Streaming 的重要功能。它能够以批处理的方式处理流数据,并且保证了完全幂等性(即能够在多次运行时保证相同的输出)。此外,这个版本还增加了更多的连接器,可以方便地从 Kafka、Flume、Twitter 和 HDFS 中读取数据。 2. Python 支持:在 Spark 3.0 中,Python 支持得到了显著的提升。现在,Python 3 官方支持了 PySpark,而且这个版本同时也新增了 Python API 的许多改进。这里,值得一提的是,Python 开发者可以使用 Pandas 和 Pyarrow 来提高数据集和数据帧的操作速度。 3. SQL:Spark 3.0 中 SQL 的更新主要体现在两个方面:一是 SQL 引擎升级至 Apache Arrow,二是 SQL 执行计划优化。这些更新使得 Spark 3.0 的 SQL 引擎能够更快地处理 SQL 查询,并且提高了查询的执行效率。 此外,Spark 3.0 还新增了 Pyspark 的 type hints 和注释支持,提供了更好的代码接口提示;改进了原有的分布式机器学习功能,加入了新的规范、API 和示例;提高了 Kerberos 和 Hadoop 文件系统(HDFS)的兼容性等。 总之,Spark 3.0 的发布,标志着 Apache Spark 在数据处理领域中的核心地位得到了继续的巩固,并且为 Python 和流处理等开源生态提供了一种更加稳定、快速和可靠的解决方案。对于数据工程师和数据科学家们而言,这无疑是一个重要的里程碑。 ### 回答3: Apache Spark是一个快速通用的大数据处理引擎,Python是一种流行的编程语言,SQL是结构化查询语言的缩写,用于管理关系型数据库,这些都是当今最重要的技术学科。最近,Spark推出了Python3_Spark 3.0的重磅发布,这意味着Spark的核心技术已经经过了重大更新,让我们听听它是如何变得更加优秀。 Python3_Spark 3.0更新重大,首先是流式处理。在此版本中,新引入的流处理模块提供了对无限数据流的完全支持,没有大小限制,可以直接应用于大多数Spark数据源和流数据源,可以轻松实现亚秒级响应,并且还包含新的UI各类展示函数,可以轻松监视流式应用程序。 其次是对Python的原生支持。Python在数据处理界面上极受欢迎,PySpark现在在Python3中完全支持,包括与Python新功能的充分配合,如Python3的类型提示(typing),这意味着PySpark代码现在可以像使用Spark的Scala和Java API一样流畅地进行编写;大大提高了数据科学家和机器学习工程师的效率。 最后是SQL支持。Spark已经成为用户基础最广泛的SQL引擎之一之一。最新的Spark 3.0版本通过实现 ANSI SQL 标准来大幅度提高了 SQL 的兼容性和处理性能。Spark 3.0 将包括对 SQL 2016 的完整支持,包括 MATCH_RECOGNIZE和其他高级功能。此外,Spark 3.0 还支持更多的数据类型,并且还具备静态类型分析和优化,可以帮助用户快速有效地查询和处理大规模数据。 总之,Spark Python3_Spark 3.0的发布,在流、Python、SQL等方面提供了全面升级,使得它的核心技术更加完善和先进,有助于增强数据处理效率,实现更好的数据分析应用。对于正在使用Spark的用户来说,这让他们的生活更加容易。 对于Spark未来的发展,它的不断升级和创新发展势头十分强劲,我们期待它的更多惊喜发布

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值