T1 林下风气
100pts
树形DP
枚举每一个点作为根节点,并且将当前点的值设为联通块的最大值st,向下搜索子节点a[j],a[j]满足条件
0<=st-a[j]<=k;若当前j不满足条件,就return。否则继续向下统计满足条件的子树个数。而对于搜索的每个节点的返回值为所有子树返回值+1的乘积(由乘法原理得到最大值与最小值相差<=k的总方案数)。
再按照以上思路搜索最大值与最小值相差<=k-1的总方案数。
两者相减即为最大值与最小值相差==k的总方案数。
注意相减后要先加mod再取模,否则会有负数,只能得70分。
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=4000,mod=19260817;
typedef long long ll;
int n,k,a[N],head[N],tot,x,y;
ll sum1,sum2,ans;
struct edge{
int v,to;
}e[N*2];
void add(int x,int y)
{
e[++tot].v=y;
e[tot].to=head[x];
head[x]=tot;
}
int read()
{
int sum=0,f=1;
char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return sum*f;
}
void print(int x)
{
if(x<0)x=-x,putchar('-');
if(x>9)print(x/10);
putchar(x%10+'0');
}
ll dfs(int x,int fa,int st,int k)
{
ll sum=1;
for(int i=head[x];i;i=e[i].to)
{
int y=e[i].v;
if(y==fa)continue;
if(y>st||a[y]!=a[st])
{
if(a[st]-a[y]<=k&&a[st]-a[y]>=0)
sum=((long long)sum*(dfs(y,x,st,k)+1))%mod;
}
}
return sum%mod;
}
int main(){
// freopen("lkf.in","r",stdin);
// freopen("lkf.out","w",stdout);
n=read();k=read();
for(int i=1;i<=n;i++)
a[i]=read();
for(int i=1;i<n;i++)
{
x=read();y=read();
add(x,y);add(y,x);
}
ll cnt;
for(int i=1;i<=n;i++)
{
cnt=dfs(i,0,i,k);
sum1=(sum1+cnt)%mod;
}
if(k)
for(int i=1;i<=n;i++)
{
cnt=dfs(i,0,i,k-1);
sum2=(sum2+cnt)%mod;
}
ans=(sum1-sum2+mod)%mod;
print(ans);
return 0;
}
T2 盟主的忧虑
100pts
并查集缩点
对于密道按从小到大排序。对于当前密道能覆盖的小道(即与当前密道构成环的小道),若小道没有被别的密道覆盖,则被当前密道覆盖(距离为当前密道距离)。因为这样可以保证所有替换小道的密道均为最小值。
每次覆盖之后发现覆盖的都是一段连续的区域,那么把这个区域缩成一个点——即用并查集维护,把区域中所有元素所在的集合与最上面元素的父节点合并。
而求最上面的元素就要用lca。而这道题数据范围不是很大,直接暴力一个个往上跳,不能用倍增(因为要修改区域中每一个元素的集合)
代码如下:
#include<bits/stdc++.h>
using namespace std;
const int N=100005;
typedef long long ll;
int n,m,head[N],tot,x,y;
int fa[N],p[N],dep[N],f[N],ans[N];
struct edge{
int v,to,id;
}e[N*2];
struct node{
int x,y,w;
}b[N];
void add(int x,int y,int i)
{
e[++tot].v=y;
e[tot].to=head[x];
e[tot].id=i;
head[x]=tot;
}
int read()
{
int sum=0,f=1;
char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
return sum*f;
}
void print(int x)
{
if(x<0)x=-x,putchar('-');
if(x>9)print(x/10);
putchar(x%10+'0');
}
bool comp(node a,node b){
return a.w<b.w;
}
void dfs(int x,int pre)
{
fa[x]=pre;
dep[x]=dep[pre]+1;
for(int i=head[x];i;i=e[i].to)
{
int y=e[i].v;
if(y==pre)continue;
p[y]=e[i].id;
dfs(y,x);
}
}
int find(int x)
{
if(x==f[x])return x;
return f[x]=find(f[x]);
}
void lca(int x,int y,int val)
{
while(x!=y)
{
while(dep[x]>dep[y]&&x!=y)
{
ans[p[x]]=val;
f[x]=find(fa[x]);
x=f[x];
}
while(dep[x]<=dep[y]&&x!=y)
{
ans[p[y]]=val;
f[y]=find(fa[y]);
y=f[y];
}
}
}
void serch()
{
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m;i++)
{
x=find(b[i].x);y=find(b[i].y);
lca(x,y,b[i].w);
}
}
int main(){
// freopen("worry.in","r",stdin);
// freopen("worry.out","w",stdout);
n=read();m=read();
for(int i=1;i<n;i++)
{
x=read();y=read();
add(x,y,i);
add(y,x,i);
}
for(int i=1;i<=m;i++)
{
b[i].x=read();b[i].y=read();b[i].w=read();
}
sort(b+1,b+m+1,comp);
dfs(1,0);
serch();
for(int i=1;i<n;i++)
{
if(ans[i]==0)ans[i]=-1;
print(ans[i]);
if(i!=n-1)putchar('\n');
}
return 0;
}
T3 明日之星
100pts
括号序+AC自动机+树状数组+线段树
注意到询问满足加减性,因此可以直接转换为括号序。
设px,qx分别表示x左括号的位置和右括号的位置
左括号代表a[x],右括号代表-a[x]
对于询问x->y,设z=lca(x,y)
查询就变成了链上的[pz…px]+(pz…py]
因为对于x->y,x是y的祖先,[px…py]间除了x->y路
径上的点,其它点出现的次数都是偶数。x->y路
径上的点恰好出现了一个左括号。
原理理解了,但是几百行代码真的orz暂时调不出来,数据结构+字符串+思维的完美(划掉)结合T—T。