NOIP2019集训9.24 day2题解

T1 林下风气

在这里插入图片描述

100pts

树形DP

枚举每一个点作为根节点,并且将当前点的值设为联通块的最大值st,向下搜索子节点a[j],a[j]满足条件

0<=st-a[j]<=k;若当前j不满足条件,就return。否则继续向下统计满足条件的子树个数。而对于搜索的每个节点的返回值为所有子树返回值+1的乘积(由乘法原理得到最大值与最小值相差<=k的总方案数)。

再按照以上思路搜索最大值与最小值相差<=k-1的总方案数。

两者相减即为最大值与最小值相差==k的总方案数。

注意相减后要先加mod再取模,否则会有负数,只能得70分。

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=4000,mod=19260817;
typedef long long ll;
int n,k,a[N],head[N],tot,x,y;
ll sum1,sum2,ans;
struct edge{
	int v,to;
}e[N*2];
void add(int x,int y)
{
	e[++tot].v=y;
	e[tot].to=head[x];
	head[x]=tot;
}
int read()
{
 int sum=0,f=1;
 char ch=getchar();
 while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
 while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
 return sum*f;
}
void print(int x)
{
	if(x<0)x=-x,putchar('-');
	if(x>9)print(x/10);
	putchar(x%10+'0');
} 
ll dfs(int x,int fa,int st,int k)
{  
    ll sum=1;
	for(int i=head[x];i;i=e[i].to)
	{
		int y=e[i].v;
		if(y==fa)continue;
		if(y>st||a[y]!=a[st])
		{
			if(a[st]-a[y]<=k&&a[st]-a[y]>=0)
			sum=((long long)sum*(dfs(y,x,st,k)+1))%mod;
		}
	} 
	return sum%mod; 
}
int main(){
//  freopen("lkf.in","r",stdin);
//  freopen("lkf.out","w",stdout);
    n=read();k=read();
    for(int i=1;i<=n;i++)
    a[i]=read();
    for(int i=1;i<n;i++)
    {
    	x=read();y=read();
    	add(x,y);add(y,x);
}
     ll cnt;
	for(int i=1;i<=n;i++)
	{
	cnt=dfs(i,0,i,k);
	sum1=(sum1+cnt)%mod;	
    }
    if(k)
    for(int i=1;i<=n;i++)
    {
    cnt=dfs(i,0,i,k-1);
    sum2=(sum2+cnt)%mod;
	}
	ans=(sum1-sum2+mod)%mod;
    print(ans);
	return 0;
}

T2 盟主的忧虑

在这里插入图片描述

100pts

并查集缩点

对于密道按从小到大排序。对于当前密道能覆盖的小道(即与当前密道构成环的小道),若小道没有被别的密道覆盖,则被当前密道覆盖(距离为当前密道距离)。因为这样可以保证所有替换小道的密道均为最小值。

每次覆盖之后发现覆盖的都是一段连续的区域,那么把这个区域缩成一个点——即用并查集维护,把区域中所有元素所在的集合与最上面元素的父节点合并。

而求最上面的元素就要用lca。而这道题数据范围不是很大,直接暴力一个个往上跳,不能用倍增(因为要修改区域中每一个元素的集合)

代码如下:

#include<bits/stdc++.h>
using namespace std;
const int N=100005;
typedef long long ll;
int n,m,head[N],tot,x,y;
int fa[N],p[N],dep[N],f[N],ans[N];
struct edge{
	int v,to,id;
}e[N*2];
struct node{
	int x,y,w;
}b[N];
void add(int x,int y,int i)
{
	e[++tot].v=y;
	e[tot].to=head[x];
	e[tot].id=i;
	head[x]=tot;
}
int read()
{
 int sum=0,f=1;
 char ch=getchar();
 while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
 while(ch>='0'&&ch<='9'){sum=(sum<<3)+(sum<<1)+ch-'0';ch=getchar();}
 return sum*f;
}
void print(int x)
{
	if(x<0)x=-x,putchar('-');
	if(x>9)print(x/10);
	putchar(x%10+'0');
} 
bool comp(node a,node b){
	return a.w<b.w;
}
void dfs(int x,int pre)
{
	fa[x]=pre;
	dep[x]=dep[pre]+1;
	for(int i=head[x];i;i=e[i].to)
	{
		int y=e[i].v;
		if(y==pre)continue;
		p[y]=e[i].id;
		dfs(y,x);
	}
}
int find(int x)
{
	if(x==f[x])return x;
	return f[x]=find(f[x]);
}
void lca(int x,int y,int val)
{
	while(x!=y)
	{
	while(dep[x]>dep[y]&&x!=y)
	{
	ans[p[x]]=val;
	f[x]=find(fa[x]);
	x=f[x];
	} 
	while(dep[x]<=dep[y]&&x!=y)
	{
	ans[p[y]]=val;
	f[y]=find(fa[y]);
	y=f[y];
	} 
	}
}
void serch()
{
	for(int i=1;i<=n;i++)
		f[i]=i;
	for(int i=1;i<=m;i++)
	{ 
	  x=find(b[i].x);y=find(b[i].y);
	  lca(x,y,b[i].w);
	}
}
int main(){
  //  freopen("worry.in","r",stdin);
 //  freopen("worry.out","w",stdout);
    n=read();m=read();
    for(int i=1;i<n;i++)
    {
     x=read();y=read();
      add(x,y,i);
      add(y,x,i);
	}
	for(int i=1;i<=m;i++)
	{
		b[i].x=read();b[i].y=read();b[i].w=read();
	}
	sort(b+1,b+m+1,comp);
	dfs(1,0);
	serch();
	for(int i=1;i<n;i++)
	{
		if(ans[i]==0)ans[i]=-1;
		print(ans[i]);
		if(i!=n-1)putchar('\n');
	}
	return 0;
}

T3 明日之星

在这里插入图片描述
在这里插入图片描述

100pts

括号序+AC自动机+树状数组+线段树
注意到询问满足加减性,因此可以直接转换为括号序。
设px,qx分别表示x左括号的位置和右括号的位置
左括号代表a[x],右括号代表-a[x]

对于询问x->y,设z=lca(x,y)
查询就变成了链上的[pz…px]+(pz…py]
因为对于x->y,x是y的祖先,[px…py]间除了x->y路
径上的点,其它点出现的次数都是偶数。x->y路
径上的点恰好出现了一个左括号。

原理理解了,但是几百行代码真的orz暂时调不出来,数据结构+字符串+思维的完美(划掉)结合T—T。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值