机器学习算法补充
文章平均质量分 67
针对机器学习技法进行经典机器学习算法的补充
FlameAlpha
荒诞之余也常伴理性,不是吗?
展开
-
单类支持向量机(One-Class SVM)之 C++ 实现
本项目基于 libsvm-cpp 以及 dataframe-cpp 进行开发,主要用于异常检测,可直接读取CSV文件进行训练,存储和读取model以及scaler,并用于在线异常检测。同时该项目使 libsvm-cpp 支持直接读取CSV文件进行训练和测试。该项目已上传至码云和Github。原创 2021-04-27 15:29:52 · 874 阅读 · 1 评论 -
单类支持向量机(One-Class SVM)
minR,aR2+C∑i=1nξi subject to: ∥xi−a∥2≤R2+ξi for all i=1,…,nξi≥0 for all i=1,…,n\begin{array} { c } \min _ { \boldsymbol { R } , \mathbf { a } } \boldsymbol { R } ^ { 2 } + \boldsymbol { C } \sum _ { \boldsymb.原创 2020-06-10 18:05:10 · 9161 阅读 · 6 评论 -
线性判别分析(Linear Discriminat Analysis)
线性判别分析(Linear Discriminat Analysis)PCA找寻的投影向量力求找到使得特征点方差较大(也就是说散的比较开),与PCA所找寻的投影向量不同,LAD所找寻的投影向量具有下面两种特性:映射后不同类数据之间的中心点(均值点)相距较远映射后同类数据之间方差较小(分布比较集中)类似于一种聚类分析,但是却是一种监督学习算法。而PCA属于一种无监督学习算法。那么将LDA的主轴与PCA的主轴画出如下:可以看出实际上数据在映射在 LDA 的主轴上可分性更高。在下面的正文中的一原创 2020-05-09 11:40:22 · 704 阅读 · 0 评论 -
主成分分析(Principal Components Analysis)
主成分分析PCA(Principal Component Analysis),作用是:聚类 Clustering:把复杂的多维数据点,简化成少量数据点,易于分簇降维:降低高维数据,简化计算,达到数据降维,压缩,降噪的目的PCA 的目的就是找到一个低维映射空间,使得数据映射后方差最大。理论实现:首先对样本空间为 ddd 维全部的数据中心化,使得均值为 0,即将所有的样本与样本均值相减获得新的样本:xi=xi−μ\mathbf { x } _ { i } = \mathbf { x } _ {原创 2020-05-10 18:36:04 · 1057 阅读 · 0 评论 -
梯度提升机(Gradient Boosting Machine)之 XGBoost
相对于随机森林使用 bagging 融合完全长成决策树,梯度提升决策树使用的 boosting 的改进版本 AdaBoost 技术的广义版本,也就是说是根据损失函数的梯度方向,所以叫做梯度提升(Gradient Boosting)。...原创 2020-05-12 09:32:41 · 2935 阅读 · 1 评论 -
梯度提升机(Gradient Boosting Machine)之 LightGBM
随着大数据时代的到来,GBDT正面临着新的挑战,特别是在精度和效率之间的权衡方面。传统的GBDT实现需要对每个特征扫描所有数据实例,以估计所有可能的分割点的信息增益。因此,它们的计算复杂度将与特征数和实例数成正比。这使得这些实现在处理大数据时非常耗时。直接的想法是减少样本数据量和特征数。LightGBM 针对这两种操作提出来两个方法:基于梯度的单边采样(Gradient-based One-Side Sampling (GOSS)):当对样本进行采样时,为了保持信息增益估计的准确性,应该更好地保留那些原创 2020-05-16 14:23:36 · 12990 阅读 · 8 评论