斐波那契数列的各种花式解法

  • 函数递归
def fib(n):
    if n<=1:
        return 1
    else:
        return n * fib(n-1)
  • 动态规划
def fib(n):
    a, b = 0, 1
    for i in range(n):
        a, b = b, a + b
    return a
print(fib(10))
  • 矩阵
1	1	2	3	5	8	13	21	34	......

X      1   1    1   1    1   1
       1   0    1   0    1   0
    --------------------------------
1  1   2   1    3   2    5   3
1  0   1   1    2   1    3   2
 F^1    F^2      F^3 	  F^4  ...  f^n

可以观察到矩阵[[1,1],[1,0]]在每次相乘自身后,第一个数既是斐波那契数列的数字
所以我们就可以使用[[1,1],[1,0]]矩阵的n-1次方来实现第n个斐波那契数列的数字求解

import numpy as np

x = np.mat([[1,1],[1,0]])	# 创建矩阵
def fib(n):
    return int((x**(n-1))[:1,:1])

print(feibo(10))
# 55

未完待续。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值