SpringBoot整合resilience4j实现接口限流

本文介绍了如何在SpringBoot2.5.15项目中使用Resilience4j框架,特别是其限流器模式,实现接口限流功能。通过配置ratelimiter和定义限流策略,确保系统稳定并提供降级处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在开发项目的时候,需要用到限流的功能,搜索资料发现,最近resilience4j这个框架还是挺火的,使用了一下还是挺简单实用的。这篇博客主要是SpringBoot简单整合resilience4j框架实现接口限流功能。

Resilience4j是一个用于增强容错能力的Java库,旨在帮助开发人员构建可靠的分布式系统。它基于断路器模式和其他容错模式,提供了一组轻量级的、可组合的容错模块,如断路器、限流器、重试等。其原理如下:

  • 断路器模式:Resilience4j主要基于断路器模式,当被保护的服务或资源发生故障或长时间不可用时,断路器会打开,从而避免对该服务的连续请求,减轻了服务的负载,快速失败,同时能够提供降级或备用方案。
  • 限流器模式:Resilience4j提供了限流器模式来控制请求的流量。限流器可以被配置为每秒钟、每分钟或每小时允许的最大请求数。当请求数超出限制时,可以选择拒绝请求、返回错误信息或放入队列等处理方式。
  • 重试机制:Resilience4j提供了灵活的重试机制,可以在服务调用失败时自动重试,减少因临时故障造成的服务不可用时间。可以配置重试的次数、重试的间隔等参数,还可以根据不同的异常类型进行针对性的重试。
  • 异步支持:Resilience4j支持异步操作,可以在异步任务中使用各种容错模块。可以使用CompletableFuture、RxJava或Java 8的CompletionStage进行异步编程。
  • 配置灵活:Resilience4j提供了灵活的配置选项,可以根据具体的需求对每个容错模块进行个性化配置。可以通过代码或者配置文件进行配置,也可以使用注解来标记需要增加容错功能的方法。

总之,Resilience4j利用断路器模式、限流器模式、重试机制等容错模式,结合灵活的配置选项和异步支持,帮助开发人员构建可靠、弹性的分布式系统。

这里Resilience4j只简单实现接口限流功能。

版本说明

  • SpringBoot 2.5.15版本
  • JDK8

代码开发整合

引入Jar
 <dependency>
      <groupId>io.github.resilience4j</groupId>
      <artifactId>resilience4j-spring-boot2</artifactId>
      <version>1.7.1</version>
  </dependency>

  <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-aop</artifactId>
  </dependency>

引入Jar包特别要注意版本,我的SpringBoot版本是2.5.15,所以我的resilience4j使用的是spring-boot2版本,且resilience4j-spring-boot2必须不能高于1.7.1,不然不兼容。

第二还要注意引入spring-boot-starter-aop,不然resilience4j不能起作用,毕竟它是通过AOP来实现功能的。

application配置
resilience4j: # resilience4j的配置开始,用于增加服务弹性的库
  ratelimiter: #限流机制的配置,用于防止过多的请求涌入系统
    instances:
      ratelimitApi: # 第一个限流策略实例的名称
        limit-for-period: 5 # 在一个特定的时间周期内,允许的最大请求数量为5
        limit-refresh-period: 1s # 时间周期长度为1s,即每秒会重置请求计数
        timeout-duration: 100ms # 当请求超过限制时,客户端应立即收到超时的响应,而不等待处理
控制器实现
@RestController
@Slf4j
public class Resilience4jController {

    @GetMapping("ratelimit")
    @RateLimiter(name="ratelimitApi",fallbackMethod = "fallback")
    public ResponseEntity<String> ratelimitApi(){
        log.info("request ratelimitApi");
        return new ResponseEntity<>("success",HttpStatus.OK);
    }

    public ResponseEntity fallback(Throwable e){
        log.error("fallback exception , {}",e.getMessage());
        return new ResponseEntity<>("您请求过于频繁,稍后再试",HttpStatus.OK);
    }
}

ratelimitApi是在application.yml中配置的名称,从这里也可以知道,不同的接口可以使用不同的限流策略,fallbackMethod是指当出现异常的时候调用的方法,即为降级服务方法。

多线程测试
import org.springframework.web.client.RestTemplate;

public class ThreadTest {
    public static void main(String[] args) {
        for(int i=0;i<5;i++){
            new Thread(()->{
                System.out.println(new RestTemplate().getForObject("http://localhost:8080/ratelimit",String.class));
            }).start();
        }
    }
}

限流设定是每秒只能处理5个请求,所以我这边用5个线程的时候,都是正常的

success
success
success
success
success

之后我调整为6个线程

success
success
success
success
success
您请求过于频繁,稍后再试

最后一个线程无法正常请求,实现效果。

Resilience4j还有其他强大的功能,等我慢慢研究一下。

### 整合压力测试方法与工具 对于Spring Boot项目的整合压力测试,采用合适的工具和技术至关重要。这些工具不仅能够帮助评估应用程序性能,还能识别潜在瓶颈并优化响应时间。 #### 使用JMeter进行负载测试 Apache JMeter是一个流行的开源软件,专为测试功能性和性能而设计。通过创建线程组模拟多个用户访问Web应用,可以轻松设置复杂的场景来模仿真实世界的流量模式[^1]。 ```bash # 安装JMeter wget https://archive.apache.org/dist/jmeter/binaries/apache-jmeter-5.4.1.tgz tar -xvf apache-jmeter-5.4.1.tgz cd apache-jmeter-5.4.1/bin/ ./jmeter.sh ``` #### 集成Gatling作为自动化解决方案 Gatling是一款专注于高并发数的HTTP压测工具,支持Scala脚本编写自定义请求逻辑。它提供了详细的报告生成功能,有助于深入分析服务器表现指标。 ```scala // Gatling Scala DSL example import io.gatling.core.Predef._ import io.gatling.http.Predef._ val httpProtocol = http.baseUrl("http://localhost:8080") val scn = scenario("BasicSimulation").exec(http("request_1").get("/api/resource")) setUp(scn.inject(atOnceUsers(10)).protocols(httpProtocol)) ``` #### 利用Resilience4j实现断路器模式 为了增强系统的弹性,在微服务架构下推荐引入Resilience4j库。该库实现了诸如限流、重试以及熔断机制等功能,从而有效防止级联失败现象的发生。 ```java @CircuitBreaker(name="backendA", fallbackMethod = "defaultResponse") public String backendCall() { return restTemplate.getForObject("http://BACKEND-A/hello", String.class); } private String defaultResponse(Exception e){ return "Default Response"; } ``` #### 结合Prometheus监控系统状态 Prometheus是一套开源监测报警框架,可收集来自不同数据源的时间序列信息,并提供强大的查询语言PromQL来进行数据分析处理。配合Grafana可视化平台展示图表,便于实时跟踪资源利用率变化趋势。 ```yaml # Prometheus configuration snippet scrape_configs: - job_name: 'springboot' metrics_path: '/actuator/prometheus' static_configs: - targets: ['localhost:8080'] ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值