计算机视觉与OpenCV:从基础到应用
1. 图像操作库概述
在图像操作领域,曾经有许多库可供开发者使用,例如英特尔的图像处理库(IPL)、视觉接口库(VIL)以及像 ImageMagick 这样的库。这些库为开发者提供了执行图像操作的工具,如图像过滤、变换和颜色空间转换等。然而,众多库的涌现也给开发者带来了诸多挑战。这些库往往相互不兼容,对于业余程序员来说成本过高,并且功能也不完整。而 OpenCV 的出现解决了这些问题。
2. OpenCV 简介
OpenCV(开源计算机视觉库)是一个开源的计算机视觉和图像处理库,提供了广泛的功能和算法。它旨在为开发实时计算机视觉应用程序提供一套全面的工具。
2.1 发展历程
OpenCV 最初由英特尔在 2000 年开发,后来作为开源项目发布。它采用 C 和 C++ 编写,并提供了多种编程语言的接口,包括 Python、Java 和 MATLAB/Octave。
2.2 跨平台特性
OpenCV 具有跨平台的特性,可在 Windows、macOS、Linux、Android 和 iOS 等操作系统上运行。
2.3 主要功能
OpenCV 提供了大量涵盖计算机视觉和图像处理各个领域的函数和算法,主要功能如下表所示:
| 功能分类 | 具体功能 |
| — | — |
| 图像和视频 I/O | 允许开发者从文件、相机和视频流中读取、写入和处理图像及视频帧 |
| 图像处理 | 提供常见图像处理操作的函数,如过滤、模糊、调整大小、阈值处理、形态学操作和颜色空间转换 | <
OpenCV图像处理与计算机视觉应用
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



