计算 d 个整数的平均联合汉明重量
1. 预备知识
在深入探讨平均联合汉明重量的计算之前,我们需要了解一些基本的定义和概念。
1.1 定义
- 转换函数 :设 $DS$ 为数字集,$n$ 和 $d$ 为正整数。$E{DS, d}$ 是一个从 $\mathbb{Z}^d$ 到 $(D_S^n)^d$ 的转换函数。若 $E{DS, d}(r_1, \ldots, r_d) = \langle (e_{1,n - 1} e_{1,n - 2} \ldots e_{1,0}), \ldots, (e_{d,n - 1} e_{d,n - 2} \ldots e_{d,0}) \rangle = \langle (e_{i,t}) {t = 0}^{n - 1} \rangle {i = 1}^{d}$,且 $\sum_{t = 0}^{n - 1} e_{i,t} 2^t = r_i$,其中 $r_i \in \mathbb{Z}$ 且 $e_{i,t} \in DS$(对于所有 $1 \leq i \leq d$),则称 $\langle (e_{i,t}) {t = 0}^{n - 1} \rangle {i = 1}^{d}$ 为 $r_1, \ldots, r_d$ 通过转换 $E{DS, d}$ 的展开式。
- 二进制转换 :特别地,当 $DS = {0, 1}$ 时,$E_b{d}$ 是将整数转换为其二进制表示的二进制转换函数。例如,$E_b{1}(12) = \langle (1100) \rangle$,$E_b{2}(
订阅专栏 解锁全文
10

被折叠的 条评论
为什么被折叠?



