32、计算 d 个整数的平均联合汉明重量

计算 d 个整数的平均联合汉明重量

1. 预备知识

在深入探讨平均联合汉明重量的计算之前,我们需要了解一些基本的定义和概念。

1.1 定义
  • 转换函数 :设 $DS$ 为数字集,$n$ 和 $d$ 为正整数。$E{DS, d}$ 是一个从 $\mathbb{Z}^d$ 到 $(D_S^n)^d$ 的转换函数。若 $E{DS, d}(r_1, \ldots, r_d) = \langle (e_{1,n - 1} e_{1,n - 2} \ldots e_{1,0}), \ldots, (e_{d,n - 1} e_{d,n - 2} \ldots e_{d,0}) \rangle = \langle (e_{i,t}) {t = 0}^{n - 1} \rangle {i = 1}^{d}$,且 $\sum_{t = 0}^{n - 1} e_{i,t} 2^t = r_i$,其中 $r_i \in \mathbb{Z}$ 且 $e_{i,t} \in DS$(对于所有 $1 \leq i \leq d$),则称 $\langle (e_{i,t}) {t = 0}^{n - 1} \rangle {i = 1}^{d}$ 为 $r_1, \ldots, r_d$ 通过转换 $E{DS, d}$ 的展开式。
  • 二进制转换 :特别地,当 $DS = {0, 1}$ 时,$E_b{d}$ 是将整数转换为其二进制表示的二进制转换函数。例如,$E_b{1}(12) = \langle (1100) \rangle$,$E_b{2}(
McgsLite 1.0.5.7912 昆仑通态组态安装包:轻量级工业监控的核心工具 在昆仑通态的组态软件体系中,McgsLite 系列以 “轻量、高效、适配小型场景” 为核心定位,而 1.0.5.7912 版本作为早期稳定版,是实现低端触摸屏与小型工业设备监控的关键工具。以下从知识领域、核心用途、版本特性等方面展开说明: 一、所属知识领域:聚焦轻量级工业人机交互 McgsLite 1.0.5.7912 本质上属于工业自动化控制领域的嵌入式组态软件,核心关联三大知识板块: 人机交互(HMI)技术:专注于触摸屏与操作人员的可视化交互,通过图形化界面实现设备状态展示、参数输入等基础功能,区别于 McgsPro 的复杂交互能力(如之前教程中的摄像头视频构件); 嵌入式数据处理:适配资源有限的低端硬件,采用轻量化内核设计,涉及嵌入式系统的程序编译、内存管理与实时数据响应技术; 工业通信协议适配:兼容主流基础工业协议(如 Modbus、西门子 PPI 等),实现触摸屏与 PLC、传感器等设备的底层数据交互,属于工业物联网(IIoT)的边缘层技术范畴。 二、核心用途:小型工业场景的低成本监控方案 该安装包的核心价值是为轻量级工业监控需求提供组态与运行环境,典型用途包括: 1. 单机设备的基础监控与控制 适用于单台工业设备(如输送机、小型机床、供热终端等)的状态管理,例如: 通过组态画面实时显示设备运行参数(转速、温度、压力等),替代传统仪表盘; 配置按钮、输入框等控件实现参数修改(如变频器频率调节)、启停控制; 触发简单报警逻辑(如温度超限弹窗提示),保障设备安全运行。 2. 低端触摸屏的组态开发与部署 作为昆仑通态低端触摸屏(如 T 系列、小型 G 系列)的配套工具,安装包包含 “开发环境 + 运行内核”: 开发端:提供基础图形组态功能(如静态画面绘制、数据变量关联),满足简单界面
【信号调制】使用不同的分类器(逻辑回归分类器、决策树、随机森林、全连接密集层和CNN)来训练模型,以预测不同信噪比值下信号的调制类型(Python代码实现)内容概要:本文介绍了利用多种分类器(包括逻辑回归、决策树、随机森林、全连接密集层和卷积神经网络)构建机器学习模型,以预测在不同信噪比条件下信号的调制类型。文中提供了完整的Python代码实现,涵盖了数据预处理、模型训练、评估与可视化等关键步骤,重点展示了各分类器在调制识别任务中的性能对比,尤其突出了深度学习模型(如CNN)在捕捉信号特征方面的优势。; 适合人群:具备一定Python编程基础和机器学习基础知识的高校学生、科研人员及通信工程领域的技术人员,特别是对信号处理与深度学习交叉方向感兴趣的研究者。; 使用场景及目标:①用于通信系统中的自动调制识别(AMR)研究;②比较传统机器学习与深度学习模型在射频信号分类任务中的表现差异;③作为深度学习在通信领域应用的教学案例,帮助理解模型构建与调参过程。; 阅读建议:建议读者结合提供的代码进行实践操作,重点关注数据集的加载方式、特征输入形式以及各模型的架构设计差异,同时可通过调整信噪比范围或引入更多调制类型来扩展实验,进一步探究模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值