题目
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767开始,将得到
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,10^4 ) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000;否则将计算的每一步在一行内输出,直到 6174 作为差出现,输出格式见样例。注意每个数字按 4 位数格式输出。
输入样例 1:
6767
结尾无空行
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
结尾无空行
输入样例 2:
2222
结尾无空行
输出样例 2:
2222 - 2222 = 0000
解题
测试点2一直不通过,差两分,查询得知输入会存在不足四位数的情况或者中间减着减着就不足四位数了,所以来记录一下,下面代码中注释说明了修改了之后就可以通过了。
#include<iostream>
#include<math.h>
#include<algorithm>
using namespace std;
int a[4];
bool cmp1(int a,int b){
return a>b;
}
bool cmp2(int a, int b){
return a<b;
}
int convert(int a[4]){
int res=0;
for(int i=0;i<4;i++)
res = res*10+a[i];
return res;
}
void toNum(int i){
int k=0;
while(i){
a[k++]=i%10;
i/=10;
}
while(k<4)
a[k++]=0;//就是这里记得重置为0
}
int main(){
int tp1=1,tp2=0;
int i;
cin>>i;
toNum(i);
do{
sort(a,a+4,cmp1);
tp1 = convert(a);
sort(a,a+4,cmp2);
tp2 = convert(a);
printf("%04d - %04d = %04d\n",tp1,tp2,tp1-tp2);
toNum(tp1-tp2);
}while((tp1 - tp2)!=6174&&(tp1-tp2)!=0);
return 0;
}