给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174
,这个神奇的数字也叫 Kaprekar 常数。
例如,我们从6767
开始,将得到
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。
输入格式:
输入给出一个 (0,104) 区间内的正整数 N。
输出格式:
如果 N 的 4 位数字全相等,则在一行内输出 N - N = 0000
;否则将计算的每一步在一行内输出,直到 6174
作为差出现,输出格式见样例。注意每个数字按 4
位数格式输出。
输入样例 1:
6767
输出样例 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
输入样例 2:
2222
输出样例 2:
2222 - 2222 = 0000
AC代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
void increase(char a[]){
char t;
for(int i=0;i<4;i++){
for(int j=i+1;j<4;j++){
if(a[i]-'0'>a[j]-'0'){
t=a[i];
a[i]=a[j];
a[j]=t;
}
}
}
}
int main()
{
char a[4];
int max,min,tmp=1,t;
scanf("%s",a);
if(strlen(a)<4){
for(int i=strlen(a);i<4;i++){
a[i]=0+'0';
}
}
while(tmp!=6174){
increase(a);
min=(a[0]-'0')*1000+(a[1]-'0')*100+(a[2]-'0')*10+(a[3]-'0');
max=(a[3]-'0')*1000+(a[2]-'0')*100+(a[1]-'0')*10+(a[0]-'0');
tmp=max-min;
if(tmp==0){
printf("%04d - %04d = 0000",max,min);
break;
}
printf("%04d - %04d = %04d\n",max,min,tmp);
t=tmp;
for(int i=0;i<4;i++){ //不能用whlie循环
a[i]=t%10+'0';//数字存入字符数组
t=t/10;
}
}
return 0;
}