- 最小生成树
(1) Prim
(2) Kruskal - 最短路
(1) 单源最短路 Dijkstra
(2) 多源汇最短路 Floyd - 关键路径
最小生成树(MST)是指在无向图中,不一定唯一
求总边权和最小和最大边权最小本质上相同
题目描述
给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
给定一张边带权的无向图 G = ( V , E ) G=(V, E) G=(V,E),其中 V V V 表示图中点的集合, E E E 表示图中边的集合, n = ∣ V ∣ n=|V| n=∣V∣, m = ∣ E ∣ m=|E| m=∣E∣。
由 V V V 中的全部 n n n 个顶点和 E E E 中 n − 1 n-1 n−1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。
输入格式
第一行包含两个整数 n n n 和 m m m。
接下来 m m m 行,每行包含三个整数 u , v , w u,v,w u,v,w,表示点 u u u 和点 v v v 之间存在一条权值为 w w w 的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible
。
数据范围
1
>
=
n
>
=
500
1 >= n >= 500
1>=n>=500,
1
>
=
m
>
=
1
0
5
1 >= m >= 10^5
1>=m>=105,
图中涉及边的边权的绝对值均不超过
10000
10000
10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
prim C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 510, M = 1e5 + 10, INF = 0x3f3f3f3f;
int g[N][N], dist[N];
int n, m;
bool st[N];
int prim(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
int res = 0;
for(int i = 0; i < n; i++){
int t = -1;
for(int j = 1; j <= n; j++)
if(!st[j] && (t == - 1 || dist[t] > dist[j]))
t = j;
if(dist[t] == INF) return INF;
st[t] = true;
res += dist[t];
for(int j = 1; j <= n; j++)
dist[j] = min(dist[j], g[t][j]);
}
return res;
}
int main(){
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while(m--){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = g[b][a] = min(g[a][b], c);
}
int res = prim();
if(res == INF) puts("impossible");
else printf("%d\n", res);
return 0;
}
kruskal C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 510, M = 1e5 + 10;
int n, m;
int p[N];
struct Edge{
int a, b, c;
bool operator< (const Edge& t) const{
return c < t.c;
}
}e[M];
int find(int x){
if(p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main(){
scanf("%d%d", &n, &m);
for(int i = 0; i < m; i++)
scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].c);
sort(e, e + m);
for(int i = 1; i <= n; i++) p[i] = i;
int res = 0, cnt = n;
for(int i = 0; i < m; i++){
int a = e[i].a, b = e[i].b, c = e[i].c;
if(find(a) != find(b)){
res += c;
cnt --;
p[find(a)] = find(b);
}
}
if(cnt > 1) puts("impossible");
else printf("%d\n", res);
return 0;
}
dijkstra一定是按照每个点到源点的最短路径排序求出来的
Dijkstra求最短路 I
题目描述
给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。
请你求出 1 1 1 号点到 n n n 号点的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,则输出 − 1 -1 −1。
输入格式
第一行包含整数 n n n 和 m m m。
接下来 m m m 行每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z。
输出格式
输出一个整数,表示 1 1 1 号点到 n n n 号点的最短距离。
如果路径不存在,则输出 − 1 -1 −1。
数据范围
1
<
=
n
<
=
500
1 <= n <= 500
1<=n<=500,
1
<
=
m
<
=
1
0
5
1 <= m <= 10^5
1<=m<=105,
图中涉及边长均不超过10000。
输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3
C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 510, M = 1e5 + 10, INF = 0x3f3f3f3f;
int n, m;
int g[N][N], dist[N];
bool st[N];
int dijkstra(){
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
for(int i = 0; i < n; i++){
int t = -1;
for(int j = 1; j <= n; j++)
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
st[t] = true;
for(int j = 1; j <= n; j++)
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
return dist[n];
}
int main(){
scanf("%d%d", &n, &m);
memset(g, 0x3f, sizeof g);
while(m --){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
g[a][b] = min(g[a][b], c);
}
int res = dijkstra();
if(res == INF) puts("-1");
else printf("%d\n", res);
return 0;
}
题目描述
给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,边权可能为负数。
再给定
k
k
k 个询问,每个询问包含两个整数
x
x
x 和
y
y
y,表示查询从点
x
x
x 到点
y
y
y 的最短距离,如果路径不存在,则输出 impossible
。
数据保证图中不存在负权回路。
输入格式
第一行包含三个整数 n , m , k n,m,k n,m,k。
接下来 m m m 行,每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z。
接下来 k k k 行,每行包含两个整数 x , y x,y x,y,表示询问点 x x x 到点 y y y 的最短距离。
输出格式
共
k
k
k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible
。
数据范围
1
>
=
n
>
=
200
1 >= n >= 200
1>=n>=200,
1
>
=
k
>
=
n
2
1 >= k >= n^2
1>=k>=n2
1
>
=
m
>
=
20000
1 >= m >= 20000
1>=m>=20000,
图中涉及边长绝对值均不超过
10000
10000
10000。
输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1
C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 210, INF = 0x3f3f3f3f;
int n, m, Q;
int d[N][N];
int main(){
scanf("%d%d%d", &n, &m, &Q);
memset(d, 0x3f, sizeof d);
for(int i = 1; i <= n; i++) d[i][i] = 0;
while(m --){
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
d[a][b] = min(d[a][b], c);
}
for(int k = 1; k <= n; k++)
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
while(Q --){
int a, b;
scanf("%d%d", &a, &b);
int c = d[a][b];
if(c > INF / 2) puts("impossible");
else printf("%d\n",c);
}
return 0;
}