【8】最小生成树、最短路、关键路径

  1. 最小生成树
    (1) Prim
    (2) Kruskal
  2. 最短路
    (1) 单源最短路 Dijkstra
    (2) 多源汇最短路 Floyd
  3. 关键路径

最小生成树(MST)是指在无向图中,不一定唯一
求总边权和最小和最大边权最小本质上相同

Prim算法求最小生成树

题目描述

给定一个 n n n 个点 m m m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

给定一张边带权的无向图 G = ( V , E ) G=(V, E) G=(V,E),其中 V V V 表示图中点的集合, E E E 表示图中边的集合, n = ∣ V ∣ n=|V| n=V m = ∣ E ∣ m=|E| m=E

V V V 中的全部 n n n 个顶点和 E E E n − 1 n-1 n1 条边构成的无向连通子图被称为 G G G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G G G 的最小生成树。

输入格式

第一行包含两个整数 n n n m m m

接下来 m m m 行,每行包含三个整数 u , v , w u,v,w u,v,w,表示点 u u u 和点 v v v 之间存在一条权值为 w w w 的边。

输出格式

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible

数据范围

1 > = n > = 500 1 >= n >= 500 1>=n>=500,
1 > = m > = 1 0 5 1 >= m >= 10^5 1>=m>=105,
图中涉及边的边权的绝对值均不超过 10000 10000 10000

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

prim C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 510, M = 1e5 + 10, INF = 0x3f3f3f3f;
int g[N][N], dist[N];
int n, m;
bool st[N];

int prim(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	int res = 0;
	for(int i = 0; i < n; i++){
		int t = -1;
		for(int j = 1; j <= n; j++)
			if(!st[j] && (t == - 1 || dist[t] > dist[j]))
				t = j;
		if(dist[t] == INF) return INF;
		st[t] = true;
		res += dist[t];
		for(int j = 1; j <= n; j++)
			dist[j] = min(dist[j], g[t][j]);
	}
	return res;
}
int main(){
	scanf("%d%d", &n, &m);
	memset(g, 0x3f, sizeof g);
	while(m--){
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		g[a][b] = g[b][a] = min(g[a][b], c);
	}
	int res = prim();
	if(res == INF) puts("impossible");
	else printf("%d\n", res);
	return 0;
}

kruskal C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 510, M = 1e5 + 10;
int n, m;
int p[N];
struct Edge{
	int a, b, c;
	bool operator< (const Edge& t) const{
		return c < t.c;
	}
}e[M];

int find(int x){
	if(p[x] != x) p[x] = find(p[x]);
	return p[x];
}
int main(){
	scanf("%d%d", &n, &m);
	for(int i = 0; i < m; i++)
		scanf("%d%d%d", &e[i].a, &e[i].b, &e[i].c);
	sort(e, e + m);
	for(int i = 1; i <= n; i++) p[i] = i;
	
	int res = 0, cnt = n;
	for(int i = 0; i < m; i++){
		int a = e[i].a, b = e[i].b, c = e[i].c;
		if(find(a) != find(b)){
			res += c;
			cnt --;
			p[find(a)] = find(b);
		}
	}
	if(cnt > 1) puts("impossible");
	else printf("%d\n", res);
	return 0;
}

在这里插入图片描述
dijkstra一定是按照每个点到源点的最短路径排序求出来的
Dijkstra求最短路 I

题目描述

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,所有边权均为正值。

请你求出 1 1 1 号点到 n n n 号点的最短距离,如果无法从 1 1 1 号点走到 n n n 号点,则输出 − 1 -1 1

输入格式

第一行包含整数 n n n m m m

接下来 m m m 行每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

输出格式

输出一个整数,表示 1 1 1 号点到 n n n 号点的最短距离。

如果路径不存在,则输出 − 1 -1 1

数据范围

1 < = n < = 500 1 <= n <= 500 1<=n<=500,
1 < = m < = 1 0 5 1 <= m <= 10^5 1<=m<=105,
图中涉及边长均不超过10000。

输入样例:
3 3
1 2 2
2 3 1
1 3 4
输出样例:
3

C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 510, M = 1e5 + 10, INF = 0x3f3f3f3f;
int n, m;
int g[N][N], dist[N];
bool st[N];
int dijkstra(){
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	for(int i = 0; i < n; i++){
		int t = -1;
		for(int j = 1; j <= n; j++)
			if(!st[j] && (t == -1 || dist[t] > dist[j]))
				t = j;
		st[t] = true;
		for(int j = 1; j <= n; j++)
			dist[j] = min(dist[j], dist[t] + g[t][j]);
	} 
	return dist[n];
}
int main(){
	scanf("%d%d", &n, &m);
	memset(g, 0x3f, sizeof g);
	while(m --){
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		g[a][b] = min(g[a][b], c);
	}
	int res = dijkstra();
	if(res == INF) puts("-1");
	else printf("%d\n", res);
	return 0;
}

Floyd求最短路

题目描述

给定一个 n n n 个点 m m m 条边的有向图,图中可能存在重边和自环,边权可能为负数。

再给定 k k k 个询问,每个询问包含两个整数 x x x y y y,表示查询从点 x x x 到点 y y y 的最短距离,如果路径不存在,则输出 impossible

数据保证图中不存在负权回路。

输入格式

第一行包含三个整数 n , m , k n,m,k n,m,k

接下来 m m m 行,每行包含三个整数 x , y , z x,y,z x,y,z,表示存在一条从点 x x x 到点 y y y 的有向边,边长为 z z z

接下来 k k k 行,每行包含两个整数 x , y x,y x,y,表示询问点 x x x 到点 y y y 的最短距离。

输出格式

k k k 行,每行输出一个整数,表示询问的结果,若询问两点间不存在路径,则输出 impossible

数据范围

1 > = n > = 200 1 >= n >= 200 1>=n>=200,
1 > = k > = n 2 1 >= k >= n^2 1>=k>=n2
1 > = m > = 20000 1 >= m >= 20000 1>=m>=20000,
图中涉及边长绝对值均不超过 10000 10000 10000

输入样例:
3 3 2
1 2 1
2 3 2
1 3 1
2 1
1 3
输出样例:
impossible
1

C++ 代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 210, INF = 0x3f3f3f3f;
int n, m, Q;
int d[N][N];
int main(){
	scanf("%d%d%d", &n, &m, &Q);
	memset(d, 0x3f, sizeof d);
	for(int i = 1; i <= n; i++) d[i][i] = 0;
	
	while(m --){
		int a, b, c;
		scanf("%d%d%d", &a, &b, &c);
		d[a][b] = min(d[a][b], c);
	}
	for(int k = 1; k <= n; k++)
		for(int i = 1; i <= n; i++)
			for(int j = 1; j <= n; j++)
				d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
				
	while(Q --){
		int a, b;
		scanf("%d%d", &a, &b);
		int c = d[a][b];
		if(c > INF / 2) puts("impossible");
		else printf("%d\n",c);
	}
	return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值