第8讲 最小生成树、最短路、关键路径
1.最小生成树 MST
无向图
不一定唯一
唯一条件: 任意环中边权都不同
(1) Prim
朴素: O ( n 2 ) O(n^2) O(n2) 稠密图
堆优化: O ( m l o g n ) O(mlogn) O(mlogn) 稀疏图 少用
S:当前已经在联通块中的所有点的集合
- dist[i] = inf
- for n 次
找到不在s集合中,距离s集合最近的点t
将这个点t放入集合中
利用这个点t, 更新不在集合中的点联系:Dijkstra算法是更新到起始点的距离,Prim是更新到集合S的距离
Prim算法与Dijkstra算法的区别
Dijkstra算法是更新不在集合中的点 离起点的距离dist[j]=min(dist[j], dist[t]+g[t][j])
Prim是更新不在集合中的点 离集合S的距离
dist[j] = min(dist[j], g[t][j])
c++:
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 505, INF = 0x3f3f3f3f;
int n,m;
int g[N][N], dist[N]; //dist存储其他点到S的距离
bool st[N];
int prim(){
memset(dist, 0x3f, sizeof dist);
dist[1]=0;
int res = 0;
for(int i=0;i<n;i++) // n个点
{
// 寻找离集合S最近的点
int t = -1 ;
for(int j = 1; j <=n ;j++)
if(!st[j] && ( t==-1 || dist[t]>dist[j] ) )
t = j ; // 更新t
// 当前可选的最短路径的点距离都是INF 说明不联通,return
if(dist[t] == INF ) return INF;
st[t]= true;
res += dist[t];
//利用这个点t, 更新不在集合中的点
for(int j = 1;j<=n;j++)
dist[j] = min(dist[j],g[t][j]);
}
return res;
}
int main()
{
cin>>n>>m;
memset(g,0x3f, sizeof g);
while (m -- ){
int a,b,c;
cin>>a>>b>>c;
g[a][b] = g[b][a] = min(g[a][b],c);
}
int res = prim();
if(res == INF) puts("impossible");
else cout<<res<<endl;
return 0;
}
(2) Kruskal
并查集 笔试不考
O ( m l o g n ) O(mlogn) O(mlogn)
看边权,每次看最小边权的边,加后是否形成环,不形成环可加
2.最短路

(1) 单源最短路 Dijkstra
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 505,INF = 0x3f3f3f3f;
int n,m;
int g[N][N],dist[N];
bool st[N];
int dij(){
memset(dist, INF, sizeof dist);
dist[1] = 0;
for (int i = 0; i < n; i ++ ){
// n个点
int t =-1 ;
for(int j = 1;j<=n;j++){
if( !st[j]&& (t==-1|| dist[t]>dist[j] ) )
t = j;
}
st[t] = true;
// 更新
for (int j = 1; j <= n; j ++ ){
dist[j] = min(dist[j],dist[t]+ g[t][j]);
}
}
return dist[n];
}
int main()
{
cin>>n>>m;
memset(g, INF, sizeof g);
while (m -- ){
int a,b,c;
cin>>a>>b>>c;
g[a][b] = min(g[a][b],c);
}
int res = dij();
if(res == INF) puts("-1");
else cout<<res<<endl;
return 0;
}
(2) 多源汇最短路 Floyd
O ( n 3 ) O(n^3) O(n3)
实际上是dp的思想,笔试不考dp,了解算法即可
d [ i ] [ j ] = m i n ( d [ i ] [ j ] , d [ i ] [ k ] + d [ k ] [ j ] ) d[i][j] = min(d[i][j], d[i][k] + d[k][j]) d[i][j]=min(d[i][j],d[i][k]+d[k][j])
1->2-> 3 与 1->3 比较 ,更新
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 205,INF = 0x3f3f3f3f;
int n,m,Q;
int d[N][N];
int main()
{
cin>>n>>m>>Q;
memset(d, 0x3f, sizeof d);
for(int i = 1;i<=n; i++ ) d[i][i] = 0;
while (m -- ){
int a,b,c;
cin>>a>>b>>c;
d[a][b] = min(d[a][b],c);
}
for(int k= 1;k<=n;k++)
for(int i = 1;i<=n;i++)
for(int j = 1;j<=n;j++)
d[i][j] = min( d[i][j], d[i][k] + d[k][j] );
while(Q--){
int x,y;
cin>>x>>y;
if(d[x][y]>INF/2) puts("impossible");
else cout<<d[x][y]<<endl;
}
return 0;
}
3.关键路径
拓扑排序的 运用
最长路 递推
点:事件、边:活动
事件最早开始时间
事件最晚开始时间
活动最早开始时间
活动最晚开始时间


4.考题:2011-41、2012-7、2012-8、2013-9、2015-6、2015-42、2016-8、2017-42、2018-42、2019-5、2020-7、2020-8
2011-41



2012-7

路径从小到大,
b:2,c:3,d:5,e:6,f:4
bcfde
选C
2012-8


A
2013-9

求关键路径,最长路径
bdcg
bdeh
bfh
选C
2015-6


Kruskal : 每次选最小边,加入看是否成环
Prime:选相邻最小边
Kruskal:第一次选5,第二次选8
Prime:v4开始
(v2,v3)
选C
2015-42

2016-8

2:5 , 3: 7 , 4: 9, 5: 4 ,6:9
5、2、3、6、4
B
2017-42


2.唯一
3.唯一条件: 任意环中边权都不同
2018-42


2种情况 2 + 2 + 3+ 2+ 2+3+2 = 16
TTL 时间,就是问TL -> BJ 距离长度
方案一能到,方案二不能到。
2019-5


d 最早开始时间: 起点到d的最长路 8+ 4 = 12
最晚开始时间: 求最长路 (27) - 端点到终点最长路(6)- 路径(7) = 14
2020-7

Kruskal : 每次选最小边,加入看是否成环,不成环就能加。
2020-8

边权和最大
C:如果只有一条关键路径
D: 有多条关键路径

本文深入探讨了图论中的重要算法,包括Prim和Kruskal两种最小生成树算法,单源最短路的Dijkstra算法以及多源汇最短路的Floyd算法,并结合实例解析了它们的应用。此外,还介绍了关键路径在最长路问题中的应用。这些算法在解决网络连接、路径优化等问题中具有广泛的实际价值。







1192

被折叠的 条评论
为什么被折叠?



