- 查找的基本概念
(1) 平均查找长度 ASL = 每个元素 查找概率 * 找到第i个元素需要进行的比较次数 的和。
(2) 决策树(判定树) - 顺序查找法
(1) 一般线性表的顺序查找
a. 若每个元素查找概率相同,则 ASL(成功) = (1 + 2 + … + n) / n = (n + 1) / 2
b. ASL(失败) = n或n+1,取决于代码写法。
(2) 有序表的顺序查找
a. 若每个元素查找概率相同,则 ASL(成功) = (1 + 2 + … + n) / n = (n + 1) / 2
b. ASL(失败) = (1 + 2 + … + n + n) / (n + 1) = n / 2 + n / (n + 1) - 折半查找法
(1) ASL = log(n + 1) - 1 - 分块查找法
设共n个元素,每块s个元素,共b = n / s块。块内无序,块间有序。
(1) 顺序查找确定块:ASL(成功) = (s^2 + 2s + n) / (2s),s = sqrt(n)时取最小值
(2) 二分查找确定块:log(n/s + 1) + (s - 1)/2 - B树及其基本操作、B+树及其基本概念
(1) B树
[1] m阶B树,每个节点最多有m个孩子。
[2] 每个节点最多有m-1个关键字(可以存有的键值对)。
[3] 根节点最少可以只有1个关键字。
[4] 非根节点至少有m/2个关键字。
[5] 每个节点中的关键字都按照从小到大的顺序排列,每个关键字的左子树中的所有关键字都小于它,而右子树中的所有关键字都大于它。
[6] 所有叶子节点都位于同一层,或者说根节点到每个叶子节点的长度都相同。
[7] 每个节点都存有索引和数据,也就是对应的key和value。
[8] 所以,根节点的关键字数量范围:1 <= k <= m-1,非根节点的关键字数量范围:m/2 <= k <= m-1。
(2) B+树
[1] B+跟B树不同B+树的非叶子节点不保存关键字记录的指针,只进行数据索引,这样使得B+树每个非叶子节点所能保存的关键字大大增加;
[2] B+树叶子节点保存了父节点的所有关键字记录的指针,所有数据地址必须要到叶子节点才能获取到。所以每次数据查询的次数都一样;
[3] B+树叶子节点的关键字从小到大有序排列,左边结尾数据都会保存右边节点开始数据的指针。
(3) 参考链接
B+树的索引节点不存任何信息,因此插入节点时,索引节点和叶节点在是否重新存节点不一样
B+支持顺序查找
叶节点
索引节点
【9】基本概念、顺序、折半、分块查找法、B/B+树
最新推荐文章于 2024-08-12 00:08:19 发布
本文介绍了查找的基本概念,包括平均查找长度和各种查找方法如顺序查找、折半查找及分块查找的细节。同时,深入探讨了B树和B+树的数据结构特性,它们在数据存储和检索中的高效性能,并讨论了B+树在索引和顺序查找中的优势。
摘要由CSDN通过智能技术生成