### My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though. My friends are very annoying and if one of them gets a bigger piece than the others, they start com- plaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size. What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different. Input One line with a positive integer: the number of test cases. Then for each test case: One line with two integers N and F with 1 N, F 10000: the number of pies and the number of friends. One line with N integers ri with 1 ri 10000: the radii of the pies. Output For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V . The answer should be given as a oating point number with an absolute error of at most 10

#include <iostream>
#include <stdio.h>
#include <cmath>
using namespace std;
#define PI acos(-1)
const int MAXN = 10010;
double S[MAXN];
int N, F;
bool check(double mid)
{
int sum = 0;
for(int i=0; i<N; i++)
{
sum += floor(S[i]/mid);
}
return sum>=F+1;
}
int main()
{
int t, r;
scanf("%d",&t);
while(t--)
{

scanf("%d%d",&N,&F);
for(int i=0; i<N; i++)
{
scanf("%d",&r);
S[i] = r*r*PI;
}
double min1 = 0, max1 = 1e14, mid;
while(max1-min1>1e-5)
{
mid = (max1+min1)/2;
if(check(mid))
{
min1 = mid;
}else{
max1 = mid;
}
}
printf("%.4f\n",min1);
}
return 0;
}


#### LA3635 Pie

2016-03-16 21:35:11

#### LA3635 Pie (二分判定)

2016-08-10 14:58:35

#### poj 3122 la3635 pie

2013-01-25 00:14:48

#### LA3635派

2014-11-21 16:13:57

#### float pie float pie float pie float pie

2008年12月25日 71KB 下载

#### 二分+LA3635

2013-12-24 14:43:04

#### GCC中的pie和fpie选项

2010-03-10 08:35:00

#### linux PIE 程序

2015-07-03 10:47:52

#### DSP_28335的中断PIE系统的个人理解

2014-03-20 20:17:43

#### 屏蔽Android PIE检测机制

2017-03-24 13:52:29

LA3635 - Pie