拓扑排序

拓扑排序理解

拓扑排序(Topological Order)是指,将一个有向无环图(Directed Acyclic Graph简称DAG)进行排序进而得到一个有序的线性序列。
例如计算机专业课程排序
需要先修预修课程才能学习之后的课程,如下图所示
在这里插入图片描述

Description

Aiden陷入了一个奇怪的梦境:他被困在一个小房子中,墙上有很多按钮,还有一个屏幕,上面显示了一些信息。屏幕上说,要将所有按钮都按下才能出去,而又给出了一些信息,说明了某个按钮只能在另一个按钮按下之后才能按下,而没有被提及的按钮则可以在任何时候按下。可是Aiden发现屏幕上所给信息似乎有矛盾,请你来帮忙判断。

Input Description

第一行,两个数N,M,表示有编号为1…N这N个按钮,屏幕上有M条信息。
接下来的M行,每行两个数ai,bi,表示bi按钮要在ai之后按下。所给信息可能有重复,保证ai≠bi。

Output Description

若按钮能全部按下,则输出“o(∩_∩)o”。
若不能,第一行输出“T_T”,第二行输出因信息有矛盾而无法确认按下顺序的按钮的个数。输出不包括引号。

Sample Input

3 3
1 2
2 3
3 2

Sample Output

T_T
2

Data Size & Hint

对于30%的数据,保证0<N≤100。
对于50%的数据,保证0<N≤2000。
对于70%的数据,保证0<N≤5000。
对于100%的数据,保证0<N≤10000,0<M≤2.5N。


#include<iostream>
#include<vector>
#include<queue>
using namespace std;
const int N = 10010;
const int INF = 0x3f3f3f3f;
int n,m;
int indegree[N];
int map[N][N];
vector<int>ans;	//存储答案
void Init()  //初始化 
{
	for(int i = 1; i <= n; i++){
		for(int j = 1; j <= n; j++){
			map[i][j] = -1;
		}
	}
}
 
void topsort()
{
	queue<int>q;  //存储入度为0的点 
	for(int i = 1; i <= n; i++){
		if(!indegree[i]) q.push(i);  //如果入度为0,则加入队列 
	} 
	while(!q.empty()){
		int temp = q.front();
		q.pop();
		ans.push_back(temp);     //将可按下的按钮存放到ans中
		for(int i = 1; i <= n; i++){
			if(map[temp][i] != -1){
				indegree[i]--;
				if(indegree[i] == 0){
					q.push(i);
				}
			}
		}	
	} 
	
}

int main()
{
	cin>>n>>m;
	int x,y;  //只有按下x按钮后才能按y 
	Init();
	for(int i = 1; i <= m; i++){
		cin>>x>>y;
		map[x][y] = 1;
		indegree[y]++;//入度+1 
	}
	topsort();
	if(ans.size() == n){  //全部按下 
		cout<<"o(∩_∩)o"<<endl;
	} else{
		cout<<"T_T"<<endl;
		cout<<n-ans.size()<<endl;
	}
	return 0;
}
发布了99 篇原创文章 · 获赞 8 · 访问量 3984
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览