【三分法】
1. 对于任意一个上凸函数,选取函数上任意两个点A,B(xA<xB),
若满足yA<yB,那么该函数的极值点必然在[xA,+∞)中,
若满足yA>yB,那么该函数极值点必然在(-∞,xB]中,
若满足yA=yB,那么该函数的极值点必然在[xA,xB]中。
2. 对于任意一个下凸函数,选取函数上任意两个点A,B(xA<xB),
若满足yA<yB,那么该函数的极值点必然在(-∞,xB]中,
若满足yA>yB,那么该函数极值点必然在[xA,+∞)中,
若满足yA=yB,那么该函数的极值点必然在[xA,xB]中。
三分法的思路与二分法很类似,不过其用途没有那么广泛,主要用于求单峰函数的极值。
此处,任选的点为m1,m2。与l,r把区间分成三段。
void Solve(){
double left, right, m1, m2, m1_value, m2_value;
left = MIN;
right = MAX;
while (left + EPS < right){
m1 = left + (right - left)/3;
m2 = right - (right - left)/3;
m1_value = f(m1);
m2_value = f(m2);
if (m1_value >= m2_value)
right = m2; //假设求解极大值
else le