【暖*墟】#三分法# 求单峰函数极值

本文介绍了利用三分法寻找单峰函数极值的思路,通过BZOJ1857 传送带问题作为实例,阐述了如何在上凸函数中找到极值点。文章首先解释了三分法的基本原理,然后详细分析了如何确定最优路径,最后讨论了如何应用三分法解决实际问题。
摘要由CSDN通过智能技术生成

【三分法】

1. 对于任意一个上凸函数,选取函数上任意两个点A,B(xA<xB),

若满足yA<yB,那么该函数的极值点必然在[xA,+∞)中,

若满足yA>yB,那么该函数极值点必然在(-∞,xB]中,

若满足yA=yB,那么该函数的极值点必然在[xA,xB]中。

2. 对于任意一个下凸函数,选取函数上任意两个点A,B(xA<xB),

若满足yA<yB,那么该函数的极值点必然在(-∞,xB]中,

若满足yA>yB,那么该函数极值点必然在[xA,+∞)中,

若满足yA=yB,那么该函数的极值点必然在[xA,xB]中。

三分法的思路与二分法很类似,不过其用途没有那么广泛,主要用于求单峰函数的极值。

这里写图片描述

此处,任选的点为m1,m2。与l,r把区间分成三段。

void Solve(){
    double left, right, m1, m2, m1_value, m2_value;
    left = MIN;
    right = MAX;
    while (left + EPS < right){
        m1 = left + (right - left)/3;
        m2 = right - (right - left)/3;
        m1_value = f(m1);
        m2_value = f(m2);
        if (m1_value >= m2_value)
            right = m2;  //假设求解极大值
        else  le
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值