图论
文章平均质量分 93
flora715_hss
纸飞机,载着岁月飞散在风里.
所有羁绊都归于平淡,誓言悉数服从命运的安排.
——时间划过风的轨迹,那个少年,还在等你.
展开
-
【暖*墟】 #图论# 最小生成树
1、最小生成树的概念实际问题:在n个城市中建立一个通信网络,则至少需要布置n-1条通信线路。这个时候我们需要考虑如何在成本最低的情况下建立这个通信网?于是我们就可以引入连通图来解决我们遇到的问题,n个城市就是图上的n个顶点,边表示两个城市的通信线路,每条边上的权重就是我们搭建这条线路所需要的成本,所以现在我们有n个顶点的连通网可以建立不同的n-1条边的生成树。当我们构造这个...原创 2018-09-01 16:35:22 · 377 阅读 · 0 评论 -
【缄*默】 #图论# 图论知识点全面总结
一. 图的储存结构【1.1 邻接矩阵】图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储顶点信息,一个二维数组(邻接矩阵)存储边的信息。设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为: 看一个实例,下图左就是一个无向图。 从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足a...原创 2018-09-15 17:12:00 · 651 阅读 · 0 评论 -
【暖*墟】 #图论# 二分图判定
二分图判断二分图:顶点可以分成两个不相交的集合U和V,使得同一集合内的顶点不相邻的图。无向图为二分图的充分必要条件:G至少有两个顶点,且其所有回路的长度均为偶数。判断某个图是否是二分图可以用着色问题解决。我们从图中任选一个顶点s,并把它着为红色,接着s的邻居必须着为蓝色,然后s邻居的邻居再次作为红色,这样一层一层着色,直到整个图被着色为止;如果在着色过程中产生了冲突,即...转载 2018-10-10 19:05:52 · 384 阅读 · 0 评论 -
【暖*墟】 #图论# 二分图匹配
一、二分图的匹配对于一个二分图G的子图M,若M的边集E的任意两条边都不连接同一个顶点,则称M为G的一个匹配。即:“任意两条边没有公共端点”的边的集合。二、最大匹配对于二分图G的一个子图M,若M为其边数最多的子图,则M为G的最大匹配。增广路:也称增广轨或交错轨。若P是图G中【一条连通两个未匹配顶点的(长)路径】,属于M的边和不属于M的边(已匹配和待匹配的边)在P上交替出现(一...原创 2018-10-11 09:22:04 · 229 阅读 · 0 评论 -
【暖*墟】 #图论# 强连通分量与缩点(tarjan)
tarjan求有向图强连通分量(scc) 【一. 常见概念理解】【二. 常见数组及其使用】【三. tarjan算法的实现过程】【四. 常见例题分析】【一. 常见概念理解】强连通分量:任意两个节点相互可达的强连通图中最大的一个。 tarjan:一个类似dfs的过程,用于寻找有向图中的强连通分量。 缩点:对于具有传导性的关系,把有向图中的"环"缩成点,形成有向...原创 2018-10-22 13:31:51 · 341 阅读 · 0 评论