python 分段拟合(curve fit)

使用 np.piecewise 创建分段函数,使用 scipy.optimize.curve_fit 进行拟合:

from scipy import optimize
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

x = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ,11, 12, 13, 14, 15], dtype=float)
y = np.array([5, 7, 9, 11, 13, 15, 28.92, 42.81, 56.7, 70.59, 
	                 84.47, 98.36, 112.25, 126.14, 140.03])

# 一个输入序列,4个未知参数,2个分段函数
def piecewise_linear(x, x0, y0, k1, k2):
	# x<x0 ⇒ lambda x: k1*x + y0 - k1*x0
	# x>=x0 ⇒ lambda x: k2*x + y0 - k2*x0
    return np.piecewise(x, [x < x0, x >= x0], [lambda x:k1*x + y0-k1*x0, 
                                   lambda x:k2*x + y0-k2*x0])

# 用已有的 (x, y) 去拟合 piecewise_linear 分段函数
p , e = optimize.curve_fit(piecewise_linear, x, y)

xd = np.linspace(0, 15, 100)
plt.plot(x, y, "o")
plt.plot(xd, piecewise_linear(xd, *p))
  • np.piecewise(x, condlist, funclist, *args, **kw)
    • condlist[i] 和 funclist[i] 一一对应,
    • 如果 len(funclist) == len(condlist)+1,则多出来的 funclist 表示默认的情况;

在这里插入图片描述

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页