传统立体匹配方法
文章平均质量分 89
从传统立体匹配论文入手,引申出相关的立体视觉术语、算法与数据结构思想等,在该过程中,主要为文字性的描述,辅以代码与数学推导,使得读者对该领域有一个基本了解。
FLOWVERSE
科技、哲学、与心理
展开
-
计算Affinity矩阵,根据能量函数计算output能量... (C++)
1. vector_idx2row_col_idx : 可以将1D的下标转换为2D的行列下标。vector_idx: 黑框中的数字即为vector_idx, 即为2D矩阵一行一行取出来,归置为1D向量的下标。cols : 以上图为例,cols为5,为2D向量的宽度。 // 将横向的vector序标,转换为2D的行列号 pair<int, int> vector_idx2row_col_idx(int vector_idx, int cols) { int row_idx =原创 2020-08-11 10:04:31 · 917 阅读 · 2 评论 -
双边滤波(bilateral filter)以及联合双边滤波(joint bilateral filter)
/*双边滤波器思想: 1. 在高斯滤波器基础上增加了图像像素之间的相似度的考虑,进而达到保边的效果。双边滤波器的实现: 1. 求权重系数 2. 确定mask大小 3. 移动处理整张影像*/#include "opencv2/opencv.hpp"#include"opencv2/highgui/highgui.hpp"#include <math.h>using namespace cv;using namespace std;const int kernel_原创 2020-07-24 11:27:38 · 9349 阅读 · 6 评论 -
概念 --- 全局匹配中常说的NP问题
简介刚开始学习全局匹配的时候,常常看到论文中写到求解这个能量函数是一个NP问题,因此需要用什么什么样的思想进行求解等等,现在用自己的话谈谈这个所谓的NP问题。我通俗理解的NP就是指时间复杂度类似于O({a ^ n}) 和O(n!),而不是 O(1),O(log(n)),O(n^a),当复杂度是非多项式级,计算机没办法处理一定规模的数据,只有规模非常非常小的时候才能计算。比如暴力计算全局的能量函数,然后求解最小值时其实就不可取,相当于是一种穷举的策略。再比如一个33的小patch,每个像素点的视差点的候原创 2020-08-11 10:38:34 · 414 阅读 · 0 评论 -
密集匹配 --- 科研学习笔记
#include <cmath> // std::exp(double)http://www.cplusplus.com/reference/valarray/exp/原创 2020-07-31 16:23:08 · 2658 阅读 · 1 评论 -
双边格网(bilateral grid)
双边滤波速度很慢 —> 加速,双边网格。首先明确一点,双边网格本质上是一个数据结构。以单通道灰度值为例,双边网格结合了图像二维的空间域信息以及一维的灰度信息,可认为其是一个3D的数组。举一个简单的例子,假设现在你手上有一只用于滤波/平滑的笔刷,当你用这只笔刷在图像EEE上的某一个位置(x,y)(x,y)(x,y)处点击了一下,对应的,3D双边网格的(x,y,E(x,y))(x,y,E(x,y))(x,y,E(x,y))位置将出现一个点,这个点即对应你在2D影像EEE上点击的那个点。随着这只笔刷原创 2020-07-24 16:35:16 · 7617 阅读 · 0 评论 -
传统立体匹配相似性测度笔记(更新中)
文章目录概述匹配测度parametric costs1. absolute difference(AD) && SAD2. BT测度3. 滤波型的测度(mean, log,bilateral)4. ZSAD5. 大名鼎鼎的NCC5.1 常见变种1---MNCC5.2 常见变种2---ZNCCNon-Parametric Matching Costs1. Rank filter1.1 改进 --- Soft Rank filter2. 大名鼎鼎的census filter3. ordinal原创 2021-03-26 16:55:52 · 2053 阅读 · 1 评论