论文笔记:Geo-Neus: Geometry-Consistent Neural Implicit Surfaces Learning for Multi-view Reconstruction

贡献

  1. 论述说明体渲染积分和基于某一个点(零集)的SDF优化之间是存在gap的。进而给出建议,表示需要直接监督SDF网络,从而提升神经隐式表面的学习;
  2. 基于理论分析,可以直接定位到SDF网络的零集合,并且应用多视图几何一致性来显式地监督SDF网络的训练。这样做的好处是,可以使得SDF专注于优化真正的表面;

- 效果:
号称是能够在复杂的细物体以及大型的平滑区域上都获得好效果。论文中给出的定性与定量结果有:
在这里插入图片描述
在这里插入图片描述

方法

给定某一个目标物体有位姿的多视图影像,Geo-Neus可以实现没有mask监督的表面重建。在体渲染的过程中,目标是直接优化SDF。
在这一节中,首先分析了颜色渲染的内在偏差,这种内在偏差会导致渲染颜色和内在几何之间的不一致性。
然后,将引入显式的SDF优化,实现几何一致性。

理论分析:有偏的颜色渲染

所谓颜色渲染中的有偏是指,物体表面的真实颜色和渲染颜色之间的有偏性。

对于一个不透明的固体 Ω ∈ R 3 \Omega \in \mathbb{R}^{3} ΩR3而言, 其不透明度可以由一个指示函数 O ( p ) \mathcal{O}(p) O(p)来进行表达:

O ( p ) = { 1 , p ∈ Ω 0 , p ∉ Ω \mathcal{O}(p)=\left\{\begin{array}{l} 1, p \in \Omega \\ 0, p \notin \Omega \end{array}\right. O(p)={1,pΩ0,p/Ω

我们不妨设 c c c为物体与光线相交处的颜色, C C C为影像上的颜色,设 o o o为相机位置,则有:

C ( o , v ) = c ( o + t ∗ v ) C(\boldsymbol{o}, \boldsymbol{v})=c\left(\boldsymbol{o}+t^{*} \boldsymbol{v}\right) C(o,v)=c(o+tv)
其中, t ∗ = argmin ⁡ { t ∣ o + t v = p , p ∈ ∂ Ω , t ∈ ( 0 , ∞ ) } t^{*}=\operatorname{argmin}\{t \mid \boldsymbol{o}+t \boldsymbol{v}=\boldsymbol{p}, \boldsymbol{p} \in \partial \Omega, t \in(0, \infty)\} t=argmin{to+tv=p,pΩ,t(0,)} ∂ Ω \partial \Omega Ω表示几何表面。

现在,再用sdf来表示物体表面,有:

∂ Ω = { p ∣ s d f ( p ) = 0 } \partial \Omega=\{p \mid s d f(p)=0\} Ω={psdf(p)=0}

对于神经体渲染而言,我们往往通过MLP网络 F Θ F_{\Theta} FΘ来推理得到sdf,通过另一个MLP网络 G Φ G_{\Phi} GΦ来得到颜色场 c ^ \hat{c} c^,可以用数学表示为:
s d ^ f ( p ) = F Θ ( p ) c ^ ( o , v , t ) = G Φ ( o , v , t ) . \begin{array}{c} s \hat{d} f(p)=F_{\Theta}(p) \\ \hat{c}(\boldsymbol{o}, \boldsymbol{v}, t)=G_{\Phi}(\boldsymbol{o}, v, t) . \end{array} sd^f(p)=FΘ(p)c^(o,v,t)=GΦ(o,v,t).

同时,影像上的颜色也可以以这种形式进行表达:
C ^ = ∫ 0 + ∞ w ( t ) c ^ ( t ) d t \hat{C}=\int_{0}^{+\infty} w(t) \hat{c}(t) d t C^=0+w(t)c^(t)dt
写成离散的形式,有:
C ^ = ∑ i = 1 n w ( t i ) c ^ ( t i ) \hat{C}=\sum_{i=1}^n w\left(t_i\right) \hat{c}\left(t_i\right) C^=i=1nw(ti)c^(ti)

对于新视图合成任务来说,我们的目标是只要使得合成视图的颜色与目标颜色一致就可以了,但是,在表面重建任务中,我们更关心的是物体表面的几何,而不是它的颜色,因此,我们有:
C = ∑ i = 1 j − 1 w ( t i ) c ^ ( t i ) + w ( t j ) c ^ ( t ∗ ^ ) + w ( t j ) ( c ^ ( t j ) − c ^ ( t ∗ ^ ) ) + ∑ i = j + 1 n w ( t i ) c ^ ( t i ) = w ( t j ) c ^ ( t ∗ ^ ) + ε sample  + ∑ i = 1 i ≠ j n w ( t i ) c ^ ( t i ) = w ( t j ) c ^ ( t ^ ∗ ) + ε sample  + ε weight  , \begin{aligned} C &=\sum_{i=1}^{j-1} w\left(t_i\right) \hat{c}\left(t_i\right)+w\left(t_j\right) \hat{c}\left(\hat{t^*}\right)+w\left(t_j\right)\left(\hat{c}\left(t_j\right)-\hat{c}\left(\hat{t^*}\right)\right)+\sum_{i=j+1}^n w\left(t_i\right) \hat{c}\left(t_i\right) \\ &=w\left(t_j\right) \hat{c}\left(\hat{t^*}\right)+\varepsilon_{\text {sample }}+\sum_{\substack{i=1 \\ i \neq j}}^n w\left(t_i\right) \hat{c}\left(t_i\right) \\ &=w\left(t_j\right) \hat{c}\left(\hat{t}^*\right)+\varepsilon_{\text {sample }}+\varepsilon_{\text {weight }}, \end{aligned} C=i=1j1w(ti)c^(ti)+w(tj)c^(t^)+w(tj)(c^(tj)c^(t^))+i=j+1nw(ti)c^(ti)=w(tj)c^(t^)+εsample +i=1i=jnw(ti)c^(ti)=w(tj)c^(t^)+εsample +εweight ,
其中, s d f ^ ( t ∗ ^ ) = 0 \hat{sdf}(\hat{t^*}) = 0 sdf^(t^)=0 t j t_j tj表示距离 t ∗ ^ \hat{t^*} t^最近的采样点 t j t_j tj ε s a m p l e \varepsilon_{sample} εsample表示由于采样操作所导致的偏差,而 ε w e i g h t \varepsilon_{weight} εweight表示由体渲染加权所导致的偏差。
进一步地,我们将上式改写为:
在这里插入图片描述
此时,可以得到物体表面颜色和估计表面颜色之间的差别为:
在这里插入图片描述
其相对的偏差为:
在这里插入图片描述

在这里插入图片描述

SDF网络的显式监督

已知,我们有一些确切正确的三维点是可以利用的,那么有:
在这里插入图片描述

遮挡处理

我们的目标重建物体是不透明物体,物体的部分对于特定的相机视角来说是不可见的。一次你,对于每一个视角来说,可能只有有限的稀疏点是可见的。
对于某一张影像 I i I_i Ii,设其相机位置为 o i o_i oi,其可见点集 P I P_I PI理应与 I i I_i Ii中的特征点 X i X_i Xi存在一致性,即:

在这里插入图片描述

视角感知的SDF损失

在这里插入图片描述
稀疏点往往位于纹理丰富、几何复杂的区域。这使得网络优化可以更好的对复杂几何区域进行合适的处理。

带有多视约束的几何一致性监督

对于表面的某一个小部分 s s s而言,其在影像上的投影是一小部分的像素patch q q q。自然,不同影像上对应表面 s s s的图像块理应是几何一致的(除去遮挡区域)。
为了简便起见,我们直接使用参考影像 I r I_r Ir的相机坐标系来表示 s s s的平面方程,有:
在这里插入图片描述

此时,参考影像中图像块的某一个影像点 x x x就可以通过单应矩阵 H \mathbf{H} H与其他影像中对应图像块的对应点 x ′ x' x联系起来:在这里插入图片描述

为了集中关注几何信息,将彩色图像变换为灰度图像。

遮挡感知的隐式表面抓取

首先要找到隐式表面:
在这里插入图片描述
就需要先找到使得sdf变号的点,即:
在这里插入图片描述
根据这些点,我们可以内插出表面点,为:
在这里插入图片描述
考虑到遮挡问题,我们取真正的表面 t t t为:
在这里插入图片描述
这样做的好处有,

  1. 使得点尽可能多视图一致;
  2. 监督过程与颜色渲染的过程尽可能一致。

几何一致性损失

使用NCC对光度一致性进行评估,有:
在这里插入图片描述

损失函数

总体的损失函数为:
在这里插入图片描述
第一项和第二项都是老生常谈,不多做解释。
在实验中,三个系数的数值为:在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FLOWVERSE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值